Skip to main content
Log in

Upregulation of Intestinal Mucin Expression by the Probiotic Bacterium E. coli Nissle 1917

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The probiotic E. coli Nissle 1917 (EcN) has been reported to have various health benefits; however, very little is known about their underlying mechanisms. In this regard, the present study aimed to elucidate the effect of the bacterium on mucin production by intestinal epithelial cells. Incubation of HT-29 cells with EcN lead to a contact time-dependent rise in mRNA levels of the MUC2, MUC3, MUC5AC, and MUC5A. The expression was markedly higher with MUC5AC gene. In most cases, MUC genes expression was more pronounced in polarized cells compared to non-polarized ones. In contrast to MUC3, the basal stimulation of polarized cells brought about markedly higher levels of other tested mucins. Similar but milder results were observed when living EcN was replaced by inactivated bacteria. With exception of MUC3, the conditioned media showed no significant effect on the mRNA level of the tested mucins. The above-mentioned mRNA results were confirmed on protein level using enzyme-linked lectin assay (ELLA) and enzyme-linked immunosorbant assay (ELISA). In contrast to other treatments, basal stimulation of polarized cells showed a growth phase-dependent MUC induction with more prominent effect by stationary-phase bacteria. In contrast to MUC 2 and MUC3, the induction of MUC5AC and MUC5B showed a bacterial count-dependent pattern. In conclusion, EcN was found to stimulate MUC gene expression in HT-29 intestinal cells. This stimulation was more distinct with polarized cells. Such observation may partially interpret some health benefits of the probiotic bacterium including antagonizing pathogen adhesion and protection of the intestinal mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M (2000) Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 47:589–594

    Article  CAS  Google Scholar 

  2. Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99

    Article  CAS  Google Scholar 

  3. Hecht G (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 277(3 Pt 1):C351–C358

    CAS  Google Scholar 

  4. Gork AS, Usui N, Ceriati E, Drongowski RA, Epstein MD, Coran AG, Harmon CM (1999) The effect of mucin on bacterial translocation in I-407 fetal and Caco-2 adult enterocyte cultured cell lines. Pediatr Surg Int 15:155–159

    Article  CAS  Google Scholar 

  5. Kruis W, Schutz E, Fric P, Fixa B, Judmaier G, Stolte M (1997) Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 11:853–858

    Article  CAS  Google Scholar 

  6. Langhendries JP, Detry J, Van Hees J, Lamboray JM, Darimont J, Mozin MJ, Secretin MC, Senetrre J (1995) Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. J Pediatr Gastroenterol Nutr 21:177–181

    Article  CAS  Google Scholar 

  7. Buisine MP, Desreumaux P, Leteurtre E, Copin MC, Colombel JF, Porcht NJ, Aubert P (2001) Mucin gene expression in human embryonic and fetal intestine. Gut 49:544–551

    Article  CAS  Google Scholar 

  8. Rhodes JM (1997) Colonic mucus and ulcerative colitis. Gut 40:807–808

    Article  CAS  Google Scholar 

  9. Forstner JF, Forstner GG (1994) Gastrointestinal mucus. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven, New York, pp 1255–1283

    Google Scholar 

  10. Nutten S, Sansonetti P, Huet G, Bisiaux CB, Meresse B, Colombel JF, Desreumaux P (2002) Epithelial inflammation response induced by Shigella flexneri depends on mucin gene expression. Microbes Infect 4:1121–1124

    Article  CAS  Google Scholar 

  11. Garland SM, Tobin JM, Pirotta M, Tabrizi SN, Opie G, Donath S, Tang ML, Morley CJ, Hickey L, Ung L, Jacobs SE (2011) The ProPrems trial: investigating the effects of probiotics on late onset sepsis in very preterm infants. BMC Infect Dis 11:210–219

    Article  CAS  Google Scholar 

  12. Baugher JL, Klaenhammer TR (2011) Application of omics tools to understanding probiotic functionality. J Dairy Sci 94:4753–4765

    Article  CAS  Google Scholar 

  13. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82:279–289

    Article  CAS  Google Scholar 

  14. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65:351–354

    CAS  Google Scholar 

  15. Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66:515S–520S

    CAS  Google Scholar 

  16. Collado MC, Gueimonde M, Sanz Y, Salminen S (2006) Adhesion properties and competitive pathogen exclusion ability of Bifidobacteria with acquired acid resistance. J Food Prot 69:1675–1679

    Google Scholar 

  17. Mattar AF, Teitelbaum DH, Drongowski RA, Yongyi F, Harmon CM, Coran AG (2002) Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int 18:586–590

    Article  CAS  Google Scholar 

  18. Mack DR, Michail S, Wei S, Mc-Dougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276(4 Pt 1):G941–950

    Google Scholar 

  19. Hafez M, Hayes K, Goldrick M, Warhurst G, Grencis R, Roberts IS (2009) The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions between intestinal epithelial cells and chemokine induction. Infect Immun 77:2995–3003

    Article  CAS  Google Scholar 

  20. Kohri K, Ueki IF, Nadel JA (2002) Neutrophil elastase induces mucin production by liganddependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol 283:L531–L540

    CAS  Google Scholar 

  21. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCz redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9:804–816

    Article  CAS  Google Scholar 

  22. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40:223–229

    Article  CAS  Google Scholar 

  23. Bengmark S (1998) Immunonutrition: role of biosurfactants, fibre and probiotic bacteria. Nutrition 14:585–594

    Article  CAS  Google Scholar 

  24. Vieira MA, Gomes TA, Ferreira AJ, Knöbl T, Servin AL, Liévin-Le Moal V (2010) Two atypical enteropathogenic Escherichia coli strains induce the production of secreted and membrane-bound mucins to benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells. Infect Immun 78(3):927–938

    Article  CAS  Google Scholar 

  25. Kim H, Seo JH, Kim KH (2003) The effect of p38 mitogen-activated protein kinase on mucin gene expression and apoptosis in Helicobacter pylori-infected gastric epithelial cells. Ann NY Acad Sci 1010:90–94

    Article  CAS  Google Scholar 

  26. Caballero-Franco C, Keller K, De Simone C, Chadee K (2007) The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292:G315–G322

    Article  CAS  Google Scholar 

  27. Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309:184–192

    CAS  Google Scholar 

  28. Yolken RH, Ojeh C, Khatri IA, Sajjan U, Forstner JF (1994) Intestinal mucins inhibit rotavirus replication in an oligosaccharide-dependent manner. J Infect Dis 169:1002–1006

    Article  CAS  Google Scholar 

  29. Larson MA, Wei SH, Weber A, Mack DR, McDonal TL (2003) Human serum amyloid A3 peptide enhances intestinal MUC3 expression and inhibits EPEC adherence. Biochem Biophys Res Commun 300(2):531–540

    Article  CAS  Google Scholar 

  30. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833

    Article  CAS  Google Scholar 

  31. El Homsi M, Ducroc R, Claustre J, Jourdan G, Gertler A, Estienne M, Bado A, Scoazec JY, Plaisancié P (2007) Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3 K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol 293(1):G365–G373

    Article  Google Scholar 

  32. Krimi RB, Kotelevets L, Dubuquoy L, Plaisancié P, Walker F, Lehy T, Desreumaux P, Van Seuningen I, Chastre E, Forgue Lafitte ME, Marie JC (2008) Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice. Inflamm Bowel Dis 14(7):931–941

    Article  Google Scholar 

  33. Garg P, Ravi A, Patel NR, Roman J, Gewirtz AT, Merlin D, Sitaraman SV (2007) Matrix metalloproteinase-9 regulates MUC-2 expression through its effect on goblet cell differentiation. Gastroenterology. 2007 May; 132(5):1877–1889. Epub 2007 Feb 23

    Google Scholar 

  34. Hafez M, Hayes K, Goldrick M, Grencis RK, Roberts IS (2010) The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of Toll-like receptor 5, CD14, MyD88, and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells. Infect Immun 78(5):2153–2162

    Article  CAS  Google Scholar 

  35. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    Article  CAS  Google Scholar 

  36. Gaudier E, Jarry A, Blottière HM, de Coppet P, Buisine MP, Aubert JP, Laboisse C, Cherbut C, Hoebler C (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 6:G1168–G1174

    Article  Google Scholar 

  37. Liévin-Le Moal V, Huet G, Aubert JP, Bara J, Forgue-Lafitte ME, Servin AL, Coconnier MH (2002) Activation of mucin exocytosis and upregulation of MUC genes in polarized human intestinal mucin-secreting cells by the thiol-activated exotoxin listeriolysin O. Cell Microbiol 4(8):515–529

    Article  Google Scholar 

  38. Mack DR, Hollingsworth MA (1994) Alteration in expression of MUC2 and MUC3 mRNA levels in HT29 colonic carcinoma cells. Biochem Biophys Res Commun 199(2):1012–1018

    Article  CAS  Google Scholar 

  39. Smirnova MG, Kiselev SL, Birchall JP, Pearson JP (2001) Up-regulation of mucin secretion in HT29-MTX cells by the pro-inflammatory cytokines tumor necrosis factor-alpha and interleukin-6. Eur Cytokine Netw 12(1):119–125

    Google Scholar 

  40. Dohrman S, Miyata M, Gallup M, Li JD, Chapelin C, Coste A, Escudier E, Nadel J, Basbaum C (1998) Mucin gene (MUC2 and MUC5AC) upregulation by gram-positive and gram-negative bacteria. Biochem Biophys Acta 1406:251–259

    CAS  Google Scholar 

  41. Lee KD, Guk SM, Chai JY (2010) Toll-like receptor 2 and Muc2 expression on human intestinal epithelial cells by Gymnophalloides seoi adult antigen. J Parasitol 96(1):58–66

    Article  CAS  Google Scholar 

  42. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 18(7):1278–1285

    CAS  Google Scholar 

  43. Radhakrishnan P, Halagowder D, Devaraj SN (2007) Altered expression of MUC2 and MUC5AC in response to Shigella infection, an in vivo study. Biochim Biophys Acta 1770:884–889

    Article  CAS  Google Scholar 

  44. Hong DH, Petrovics G, Anderson WB, Forstner J, Forstner G (1999) Induction of mucin gene expression in human colonic cell lines by PMA is dependent on PKC-epsilon. Am J Physiol 277(5 Pt 1):G1041–G1047

    CAS  Google Scholar 

  45. Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I (2002) Induction of MUC2 and MUC5AC Mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/ras/raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem 277(35):32258–32267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Hafez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafez, M.M. Upregulation of Intestinal Mucin Expression by the Probiotic Bacterium E. coli Nissle 1917. Probiotics & Antimicro. Prot. 4, 67–77 (2012). https://doi.org/10.1007/s12602-012-9092-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9092-0

Keywords

Navigation