Skip to main content

Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance

Abstract

A Bacillus spp. strain isolated from a honey sample in Morillos (Salta, Argentina) was phylogenetically characterized as B. subtilis subsp. subtilis Mori2. The strain was administered to bee colonies as a monoculture in one litre of sugarcane syrup (125 g/L) at a final concentration of 105 spores/mL to evaluate the bee colony performance. The treated colony was monitored, and any changes were compared with the control hives. All conditions were identical (weather, nourishment and supervision), except for the Bacillus spore supplement. The new nourishment, which was administered monthly from May to December 2010, was accepted by the bees and consumed within ca. 24–48 h. Photograph records and statistic analyses revealed significant differences in the open and operculated brood areas between the treated and control groups. The status of the colony improved after the second administration of the Bacillus spores until the end of the experiment. A higher number of bees were counted in the treated groups (26% more than the control) with respect to the initial number. Furthermore, at the time of harvest, honey storage in the treated hives was 17% higher than in the control hives. In addition, spore counts of both Nosema sp. and Varroa sp. foretica in treated hives were lower than in the control hives. These results with experimental hives would indicate that B. subtilis subsp. subtilis Mori2 favoured the performance of bees; firstly, because the micro-organism stimulated the queen’s egg laying, translating into a higher number of bees and consequently more honey. Secondly, because it reduced the prevalence of two important bee diseases worldwide: nosemosis and varroosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Vázquez F, de los Santos M, Grometbauer C (2009) Informe Apícola. Síntesis Apícola. SAGPyA [online]. Available at http://www.alimentosargentinos.gov.ar/0-3/apicola/01_info/a_sintesis/lista/148.pdf

  2. Alippi AM (1996) Caracterización de aislamientos de Paenibacillus larvae mediante tipo bioquímico y resistencia a oxitetraciclina. Rev Argent Microbiol 28:197–203

    CAS  Google Scholar 

  3. Miyagi T, Peng CYS, Chuang RY, Mussen EC, Spivak MS, Doi RH (2000) Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus arvae in the United States. J Invertebr Pathol 75:95–96

    Article  CAS  Google Scholar 

  4. Evans JD (2003) Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J Invertebr Pathol 83:46–50

    Article  CAS  Google Scholar 

  5. Charbonneau R, Gosselin P, Thibault C (1992) Irradiation and American foulbrood. Am Bee J 132:249–251

    Google Scholar 

  6. Barnett EA, Charlton AJ, Fletcher MR (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag Sci 63:1051–1057

    Article  CAS  Google Scholar 

  7. Martel AC, Zeggane S, Drajnudel P, Faucon JP, Aubert M (2006) Tetracycline residues in honey after hive treatment. Food Addit Contam 23:265–273

    Article  CAS  Google Scholar 

  8. Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18

    Article  CAS  Google Scholar 

  9. Sheridan R, Policastro B, Thomas S, Rice D (2008) Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed. J Agric Food Chem 56:3509–3516

    Article  CAS  Google Scholar 

  10. La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94:245–256

    Article  Google Scholar 

  11. Anadón A, Martínez-Larrañaga MR, Aranzazu Martínez M (2006) Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 45:91–95

    Article  Google Scholar 

  12. McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 5:97–105

    Article  Google Scholar 

  13. Cutting SM (2010) Bacillus probiotics. Food Microbiol 28:214–220

    Article  Google Scholar 

  14. Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2:101–110

    Article  Google Scholar 

  15. Urdaci MC, Bressollier P, Pinchuk I (2004) Bacillus clausii. Antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90

    Article  Google Scholar 

  16. Spinosa MR, Braccini T, Ricca E, de Felice M, Morelli L, Pozzi G, Oggioni MR (2000) On the fate of ingested Bacillus spores. Res Microbiol 151:361–368

    Article  CAS  Google Scholar 

  17. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978

    Article  CAS  Google Scholar 

  18. Audisio MC, Carrillo L (2004) Estudios de cepas del género Bacillus aisladas de mieles del norte argentino que sintetizan sustancias con efecto anti-Listeria XVII Congreso Latinoamericano y × Congreso Argentino de Microbiología. Buenos Aires (Argentina)

  19. Sabaté DC, Carrillo L, Audisio MC (2007) Síntesis de surfactina, bacteriocina y compuestos antifúngicos por cepas de Bacillus sp. aisladas de miel y abeja. XI Congreso Argentino de Ciencia y Tecnología de Alimentos (CYTAL), 2° Simposio de Nuevas Tecnologías. Buenos Aires (Argentina). CD-ROM. ISBN978-987-22165-2-8

  20. Logan NA, de Vos P (2009) In Bacillus. The firmicutes volume 3. In: Paul De Vos, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn

  21. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 466

    Google Scholar 

  22. Daffonchio D, Borin S, Frova G, Manachini P, Sorlini C (1998) PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis. Int J Syst Bacteriol 48:107–116

    Article  CAS  Google Scholar 

  23. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  24. de Clerck E, Vanhoutte T, Hebb T, Geerinck J, Devos J, de Vos P (2004) Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl Environ Microbiol 70:3664–3672

    Article  Google Scholar 

  25. Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:163–169

    Article  Google Scholar 

  26. Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. beegut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2:29–34

    Article  CAS  Google Scholar 

  27. Fries I, Aarhus A, Hansen H, Korpela S (1991) Comparison of diagnostic methods for detection of low infestation levels of Varroa jacobsoni in honey-bee (Apis mellifera) colonies. Exp Appl Acarol 10:279–287

    Article  Google Scholar 

  28. Cantwell GE (1970) Standard methods for counting Nosema spores. Am Bee J 110:222–223

    Google Scholar 

  29. de Jong D, de Andrea Roma D, Gonçalves LS (1982) A comparative analysis of shaking solutions for the detection of Varroa jacobsoni on adult honeybees. Apidologie 13:297–306

    Article  Google Scholar 

  30. SENASA (2009) Instructivo para el monitoreo de varroasis. Anexo III. Programa de Control de Enfermedades de las Abejas (DLS). Revalida de Inspectores Sanitarios Apícolas. http://www.senasa.gov.ar/Archivos/File/File3073-revalida-isas-2010.pdf

  31. Nakamura LK, Roberts MS, Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizeni subsp. nov. Int J Syst Evol Microbiol 49:1211–1215

    CAS  Google Scholar 

  32. Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Leeuwenhoek 78:123–127

    Article  CAS  Google Scholar 

  33. Iurlina MO, Fritz R (2005) Characterization of microorganisms in Argentinean honeys from different sources. Int J Food Microbiol 105:297–304

    Article  CAS  Google Scholar 

  34. Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Prog 21:1026–1031

    Article  CAS  Google Scholar 

  35. Prabakaran G, Balaram K, Hoti SL, Manonmani AM (2007) A costeffective medium for the large-scale production of Bacillus sphaericus H5a5b (VCRC B42) for mosquito control. Biol Control 41:379–383

    Article  Google Scholar 

  36. Lalloo R, Maharajh D, Görgens J, Gardiner N (2010) A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol 86:499–508

    Article  CAS  Google Scholar 

  37. Liu WM, Bajpai R, Bihari V (1994) High-density cultivation of spore formers. Ann N Y Acad Sci 721:310–325

    Article  CAS  Google Scholar 

  38. Sonenshein AL (2000) Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3:561–566

    Article  CAS  Google Scholar 

  39. Nickerson K, Bulla LA Jr (1974) Physiology of spore forming bacteria associated with insects: minimal nutritional requirements for growth, sporulation and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol 28:124–128

    CAS  Google Scholar 

  40. Makkar RS, Cameotra SC (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74:887–889

    Article  CAS  Google Scholar 

  41. Joshi S, Bharucha Ch, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199

    Article  CAS  Google Scholar 

  42. Içgen Y, Içgen B, Özcengiz G (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources. Res Microbiol 153:605–609

    Article  Google Scholar 

  43. Sella SRBR, Guizelini BP, Vandenberghe LPS, Medeiros ABP, Soccol CR (2009) Bioindicator production with Bacillus atrophaeus’ thermal-resistant spores cultivated by solid-state fermentation. Appl Microbiol Biotechnol 82:1019–1026

    Article  CAS  Google Scholar 

  44. Hornstra LM, de Vries YP, de Vos WM, Abee T (2006) Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC14579. Appl Environ Microbiol 72:3746–3749

    Article  CAS  Google Scholar 

  45. Atehortúa P, Álvarez H, Orduz S (2007) Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention. Bioprocess Biosyst Eng 30:447–456

    Article  Google Scholar 

  46. Lalloo R, Maharajh D, Görgens J, Gardiner N (2008) Functionality of a Bacillus cereus biological agent in response to physiological variables encountered in aquaculture. Appl Microbiol Biotechnol 79:111–118

    Article  CAS  Google Scholar 

  47. Ahmed A (2008) Manual Apícola del Norte Argentino. Magna, Tucumán, Argentina, pp 6–146

  48. Catalayud F, Verdú MJ (1992) Evolución anual de parámetros poblacionales de colonias de Apis mellifera L. (Hymenoptera: Apidae) parasitadas por Varroa jacobsoni Oud. (Mesostigmata: Varroidae). Boletín de Sanidad Vegetal Plagas 18:777–788

    Google Scholar 

  49. Máchová M, Rada CV, Huk UJ, Smékal F (1997) Development of probiotic for bees. Apiacta 4:99–111

    Google Scholar 

  50. Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756

    Article  CAS  Google Scholar 

  51. Signorini ML, Molineri A, Bulacio-Cagnolo N, Merke J, Luiselli S, Caporgno J (2010) Evaluation of the nosemosis treatment effectiveness in apiaries in the Santa Fe province (Argentina). Revista FAVE Ciencias Veterinarias 9(1):7–16

    Google Scholar 

  52. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by PICTR 890/06 (ANPCyT), PI 1725 (CIUNSa) and PIP11220100100019 (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Audisio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sabaté, D.C., Cruz, M.S., Benítez-Ahrendts, M.R. et al. Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics & Antimicro. Prot. 4, 39–46 (2012). https://doi.org/10.1007/s12602-011-9089-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9089-0

Keywords

  • Apis mellifera
  • Bacillus subtilis subsp. subtilis
  • Probiotic
  • Colony performance