Abstract
A Bacillus spp. strain isolated from a honey sample in Morillos (Salta, Argentina) was phylogenetically characterized as B. subtilis subsp. subtilis Mori2. The strain was administered to bee colonies as a monoculture in one litre of sugarcane syrup (125 g/L) at a final concentration of 105 spores/mL to evaluate the bee colony performance. The treated colony was monitored, and any changes were compared with the control hives. All conditions were identical (weather, nourishment and supervision), except for the Bacillus spore supplement. The new nourishment, which was administered monthly from May to December 2010, was accepted by the bees and consumed within ca. 24–48 h. Photograph records and statistic analyses revealed significant differences in the open and operculated brood areas between the treated and control groups. The status of the colony improved after the second administration of the Bacillus spores until the end of the experiment. A higher number of bees were counted in the treated groups (26% more than the control) with respect to the initial number. Furthermore, at the time of harvest, honey storage in the treated hives was 17% higher than in the control hives. In addition, spore counts of both Nosema sp. and Varroa sp. foretica in treated hives were lower than in the control hives. These results with experimental hives would indicate that B. subtilis subsp. subtilis Mori2 favoured the performance of bees; firstly, because the micro-organism stimulated the queen’s egg laying, translating into a higher number of bees and consequently more honey. Secondly, because it reduced the prevalence of two important bee diseases worldwide: nosemosis and varroosis.
This is a preview of subscription content, access via your institution.





References
Vázquez F, de los Santos M, Grometbauer C (2009) Informe Apícola. Síntesis Apícola. SAGPyA [online]. Available at http://www.alimentosargentinos.gov.ar/0-3/apicola/01_info/a_sintesis/lista/148.pdf
Alippi AM (1996) Caracterización de aislamientos de Paenibacillus larvae mediante tipo bioquímico y resistencia a oxitetraciclina. Rev Argent Microbiol 28:197–203
Miyagi T, Peng CYS, Chuang RY, Mussen EC, Spivak MS, Doi RH (2000) Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus arvae in the United States. J Invertebr Pathol 75:95–96
Evans JD (2003) Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J Invertebr Pathol 83:46–50
Charbonneau R, Gosselin P, Thibault C (1992) Irradiation and American foulbrood. Am Bee J 132:249–251
Barnett EA, Charlton AJ, Fletcher MR (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003. Pest Manag Sci 63:1051–1057
Martel AC, Zeggane S, Drajnudel P, Faucon JP, Aubert M (2006) Tetracycline residues in honey after hive treatment. Food Addit Contam 23:265–273
Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18
Sheridan R, Policastro B, Thomas S, Rice D (2008) Analysis and occurrence of 14 sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction followed. J Agric Food Chem 56:3509–3516
La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94:245–256
Anadón A, Martínez-Larrañaga MR, Aranzazu Martínez M (2006) Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 45:91–95
McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 5:97–105
Cutting SM (2010) Bacillus probiotics. Food Microbiol 28:214–220
Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2:101–110
Urdaci MC, Bressollier P, Pinchuk I (2004) Bacillus clausii. Antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90
Spinosa MR, Braccini T, Ricca E, de Felice M, Morelli L, Pozzi G, Oggioni MR (2000) On the fate of ingested Bacillus spores. Res Microbiol 151:361–368
Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978
Audisio MC, Carrillo L (2004) Estudios de cepas del género Bacillus aisladas de mieles del norte argentino que sintetizan sustancias con efecto anti-Listeria XVII Congreso Latinoamericano y × Congreso Argentino de Microbiología. Buenos Aires (Argentina)
Sabaté DC, Carrillo L, Audisio MC (2007) Síntesis de surfactina, bacteriocina y compuestos antifúngicos por cepas de Bacillus sp. aisladas de miel y abeja. XI Congreso Argentino de Ciencia y Tecnología de Alimentos (CYTAL), 2° Simposio de Nuevas Tecnologías. Buenos Aires (Argentina). CD-ROM. ISBN978-987-22165-2-8
Logan NA, de Vos P (2009) In Bacillus. The firmicutes volume 3. In: Paul De Vos, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn
Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 466
Daffonchio D, Borin S, Frova G, Manachini P, Sorlini C (1998) PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis. Int J Syst Bacteriol 48:107–116
Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256
de Clerck E, Vanhoutte T, Hebb T, Geerinck J, Devos J, de Vos P (2004) Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl Environ Microbiol 70:3664–3672
Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:163–169
Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. beegut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2:29–34
Fries I, Aarhus A, Hansen H, Korpela S (1991) Comparison of diagnostic methods for detection of low infestation levels of Varroa jacobsoni in honey-bee (Apis mellifera) colonies. Exp Appl Acarol 10:279–287
Cantwell GE (1970) Standard methods for counting Nosema spores. Am Bee J 110:222–223
de Jong D, de Andrea Roma D, Gonçalves LS (1982) A comparative analysis of shaking solutions for the detection of Varroa jacobsoni on adult honeybees. Apidologie 13:297–306
SENASA (2009) Instructivo para el monitoreo de varroasis. Anexo III. Programa de Control de Enfermedades de las Abejas (DLS). Revalida de Inspectores Sanitarios Apícolas. http://www.senasa.gov.ar/Archivos/File/File3073-revalida-isas-2010.pdf
Nakamura LK, Roberts MS, Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizeni subsp. nov. Int J Syst Evol Microbiol 49:1211–1215
Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Leeuwenhoek 78:123–127
Iurlina MO, Fritz R (2005) Characterization of microorganisms in Argentinean honeys from different sources. Int J Food Microbiol 105:297–304
Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Prog 21:1026–1031
Prabakaran G, Balaram K, Hoti SL, Manonmani AM (2007) A costeffective medium for the large-scale production of Bacillus sphaericus H5a5b (VCRC B42) for mosquito control. Biol Control 41:379–383
Lalloo R, Maharajh D, Görgens J, Gardiner N (2010) A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol 86:499–508
Liu WM, Bajpai R, Bihari V (1994) High-density cultivation of spore formers. Ann N Y Acad Sci 721:310–325
Sonenshein AL (2000) Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3:561–566
Nickerson K, Bulla LA Jr (1974) Physiology of spore forming bacteria associated with insects: minimal nutritional requirements for growth, sporulation and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol 28:124–128
Makkar RS, Cameotra SC (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74:887–889
Joshi S, Bharucha Ch, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199
Içgen Y, Içgen B, Özcengiz G (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources. Res Microbiol 153:605–609
Sella SRBR, Guizelini BP, Vandenberghe LPS, Medeiros ABP, Soccol CR (2009) Bioindicator production with Bacillus atrophaeus’ thermal-resistant spores cultivated by solid-state fermentation. Appl Microbiol Biotechnol 82:1019–1026
Hornstra LM, de Vries YP, de Vos WM, Abee T (2006) Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC14579. Appl Environ Microbiol 72:3746–3749
Atehortúa P, Álvarez H, Orduz S (2007) Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention. Bioprocess Biosyst Eng 30:447–456
Lalloo R, Maharajh D, Görgens J, Gardiner N (2008) Functionality of a Bacillus cereus biological agent in response to physiological variables encountered in aquaculture. Appl Microbiol Biotechnol 79:111–118
Ahmed A (2008) Manual Apícola del Norte Argentino. Magna, Tucumán, Argentina, pp 6–146
Catalayud F, Verdú MJ (1992) Evolución anual de parámetros poblacionales de colonias de Apis mellifera L. (Hymenoptera: Apidae) parasitadas por Varroa jacobsoni Oud. (Mesostigmata: Varroidae). Boletín de Sanidad Vegetal Plagas 18:777–788
Máchová M, Rada CV, Huk UJ, Smékal F (1997) Development of probiotic for bees. Apiacta 4:99–111
Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756
Signorini ML, Molineri A, Bulacio-Cagnolo N, Merke J, Luiselli S, Caporgno J (2010) Evaluation of the nosemosis treatment effectiveness in apiaries in the Santa Fe province (Argentina). Revista FAVE Ciencias Veterinarias 9(1):7–16
Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119
Acknowledgements
This work was funded by PICTR 890/06 (ANPCyT), PI 1725 (CIUNSa) and PIP11220100100019 (CONICET).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sabaté, D.C., Cruz, M.S., Benítez-Ahrendts, M.R. et al. Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics & Antimicro. Prot. 4, 39–46 (2012). https://doi.org/10.1007/s12602-011-9089-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12602-011-9089-0
Keywords
- Apis mellifera
- Bacillus subtilis subsp. subtilis
- Probiotic
- Colony performance