Skip to main content

Advertisement

Log in

Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a Gram-positive, non-spore forming, catalase-positive rod that is a major bacterial food-borne disease agent associated with uncooked meats, including poultry, uncooked vegetables, soft cheeses, and unpasteurized milk. The bacterium may be carried by animals without signs of disease, can replicate at refrigeration temperatures, and is frequently associated with biofilms. There is a need to discover innovative pathogen intervention technologies for this bacterium. Consequently, bioinformatic analyses were used to identify genes encoding lytic protein sequences in the genomes of L. monocytogenes isolates. PCR primers were designed that amplified nucleotide sequences of a putative N-acetylmuramoyl-l-alanine amidase gene from L. monocytogenes strain 4b. The resultant amplification product was cloned into an expression vector, propagated in Escherichia coli Rosetta strains, and the recombinant protein was purified to homogeneity. Gene and protein sequencing confirmed that the predicted and chemically determined amino acid sequence of the recombinant protein designated PlyLM was a putative N-acetylmuramoyl-l-alanine amidase. The recombinant lytic protein was capable of lysing both the parental L. monocytogenes strain as well as other strains of the bacterium in spot and MIC/MIB assays, but was not active against other bacteria beyond the genus. A microtiter plate assay was utilized to assay for the ability of the recombinant lysin protein to potentially aid with digestion of a L. monocytogenes biofilm. Protease or lysozyme digestion alone did not significantly reduce the L. monocytogenes biofilm. Although the recombinant protein alone reduced the biofilm by only 20%, complete digestion of the bacterial monolayer was accomplished in conjunction with a protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amalaradjou MA, Norris CE, Venkitanarayanan K (2009) Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes. Appl Environ Microbiol 75(12):4089–4092

    Article  CAS  Google Scholar 

  2. Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320(5879):1047–1050

    Article  CAS  Google Scholar 

  3. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    Article  CAS  Google Scholar 

  4. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9(4):261–266

    Article  CAS  Google Scholar 

  5. Barton Behravesh C, Jones TF, Vugia DJ, Long C, Marcus R, Smith K, Thomas S, Zansky S, Fullerton KE, Henao OL, Scallan E, Group FoodNetWorking (2011) Deaths associated with bacterial pathogens transmitted commonly through food: foodborne diseases active surveillance network (FoodNet), 1996–2005. J Infect Dis 204(2):263–267

    Article  Google Scholar 

  6. Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287(2):185–191

    Article  CAS  Google Scholar 

  7. Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM (2009) Differentially conserved staphylococcal SH3b cell wall binding domains confer increased staphylolytic and strepolytic activity to a streptococcal prophage endolysin domain. Gene 443(1–2):32–41

    Article  CAS  Google Scholar 

  8. Berrang ME, Meinersmann RJ, Frank JF, Smith DP, Genzlinger LL (2005) Distribution of Listeria monocytogenes subtypes within a poultry further processing plant. J Food Prot 68(5):980–985

    CAS  Google Scholar 

  9. Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59(9):827–831

    Google Scholar 

  10. Borucki MK, Kim SH, Call DR, Smole SC, Pagotto F (2004) Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping and multilocus sequence typing. J Clin Microbiol 42:5270–5276

    Article  CAS  Google Scholar 

  11. Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69(12):7336–7342

    Article  CAS  Google Scholar 

  12. Brandt AL, Castillo A, Harris KB, Keeton JT, Hardin MD, Taylor TM (2010) Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J Food Sci 75(9):M557–M563

    Article  CAS  Google Scholar 

  13. Bublitz M, Polle L, Holland C, Heinz DW, Nimtz M, Schubert W-D (2009) Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes. Mol Microbiol 71(6):1509–1522

    Article  CAS  Google Scholar 

  14. Buchrieser C (2007) Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect 9(10):1147–1155

    Article  CAS  Google Scholar 

  15. Caro A, Humblot V, Méthivier C, Minier M, Barbes L, Li J, Salmain M, Pradier CM (2010) Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity. J Colloid Interface Sci 349(1):13–18

    Article  CAS  Google Scholar 

  16. Caro A, Humblot V, Méthivier C, Minier M, Salmain M, Pradier CM (2009) Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. J Phys Chem B 113(7):2101–2109

    Article  CAS  Google Scholar 

  17. Carson L, Gorman SP, Gilmore BF (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 59(3):447–455

    CAS  Google Scholar 

  18. Cerca N, Olivereira R, Azeredo J (2007) Susceptibility of Staphylococcus epidermis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett Appl Microbiol 45(3):313–317

    Article  CAS  Google Scholar 

  19. Chen J, Novick RP (2009) Phage-mediated intergenic transfer of toxin genes. Science 323(5910):139–141

    Article  CAS  Google Scholar 

  20. Crowe J, Döbeli H, Gentz R, Hochuli E, Stüber D, Henco K (1994) 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol 31:371–387

    CAS  Google Scholar 

  21. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958

    Article  CAS  Google Scholar 

  22. Donovan DM (2007) Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol 1(2):113–122

    Article  CAS  Google Scholar 

  23. Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG (2006) Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol 72(4):2988–2996

    Article  CAS  Google Scholar 

  24. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42(8):3819–3822

    Article  CAS  Google Scholar 

  25. Doumith M, Cazalet C, Simoes N, Frangeul L, Jaquet C, Kunst F, Martin P, Cossart O, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics. Infect Immun 72(2):1072–1083

    Article  CAS  Google Scholar 

  26. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  Google Scholar 

  27. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13(10):491–496

    Article  CAS  Google Scholar 

  28. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11(5):393–400

    Article  CAS  Google Scholar 

  29. Franciosa G, Maugliani A, Scalfaro C, Floridi F, Aureli P (2009) Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int J Immunopathol Pharmacol 22(1):183–193

    CAS  Google Scholar 

  30. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404

    Article  CAS  Google Scholar 

  31. Fugett E, Fortes E, Nnoka C, Wiedmann W (2006) International Life Sciences Institute North America Listeria monocytogenes strain collection development of standard Listeria monocytogenes strain sets for research and validation studies. J Food Prot 69(12):2929–2938

    CAS  Google Scholar 

  32. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15

    Article  Google Scholar 

  33. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann E, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del Portillo F, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vázquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294(5543):849–852

    CAS  Google Scholar 

  34. Grandgirard D, Loeffler JM, Fischetti VA, Leib SL (2008) Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis 197(11):1519–1522

    Article  CAS  Google Scholar 

  35. Gyles CL (2008) Antimicrobial resistance in selected bacteria from poultry. Anim Health Res Rev 9(2):149–158

    Article  Google Scholar 

  36. Hames BD (1990) One-dimensional polyacrylamide gel electrophoresis. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins: a practical approach, 2nd edn. Oxford University Press, NY, pp 1–147

    Google Scholar 

  37. Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76(7):2271–2279

    Article  CAS  Google Scholar 

  38. Hiett KL, Stintzi A, Andacht T, Kuntz RL, Seal BS (2008) Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar gene products potentially important for colonizing the chicken intestine. Funct Integr Genomics 8(4):407–420

    Article  CAS  Google Scholar 

  39. Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144(11):3039–3047

    Article  CAS  Google Scholar 

  40. Hunt DF, Yates JR 3rd, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83(17):6233–6237

    Article  CAS  Google Scholar 

  41. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500

    Article  CAS  Google Scholar 

  42. Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32(9):545–554

    CAS  Google Scholar 

  43. Kristensen T, Voss H, Schwager C, Stegemann J, Sproat B, Ansorge W (1998) T7 DNA polymerase in automated dideoxy sequencing. Nucleic Acids Res 16(8):3487–3496

    Article  Google Scholar 

  44. Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131(5):1370

    Google Scholar 

  45. Leverentz B, Conway WS, Camp MJ, Janisiewicz W, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69(8):4519–4526

    Article  CAS  Google Scholar 

  46. Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71(11):6199–6204

    Article  CAS  Google Scholar 

  47. Loessner MJ, Kramer K, Ebel F, Scherer S (2002) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determines specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44(2):335–349

    Article  CAS  Google Scholar 

  48. Loessner MJ, Wendlinger G, Scherer S (1995) Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16(6):1231–1241

    Article  CAS  Google Scholar 

  49. Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, Pucci P, Amoresano A, Cocconcelli PS, Artini M, Costerton JW, Selan L (2008) Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 45(1):45–52

    Article  CAS  Google Scholar 

  50. Low LY, Yang C, Perego M, Osterman A, Liddington RC (2005) Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280(42):35433–35439

    Article  CAS  Google Scholar 

  51. Mangalassary S, Han I, Rieck J, Acton J, Dawson P (2008) Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiol 25(7):866–870

    Article  CAS  Google Scholar 

  52. Makobongo MO, Kovachi T, Gancz H, Mor A, Merrell DS (2009) In vitro antibacterial activity of acyl-lysyl oligomers against Helicobacter pylori. Antimicrob Agents Chemother 53(10):4231–4239

    Article  CAS  Google Scholar 

  53. Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC (2009) Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS One 4(11): e7979

    Google Scholar 

  54. Nathan C, Goldberg FM (2005) The profit problem in antibiotic R&D. Nat Rev Drug Discov 4(11):887–891

    Article  CAS  Google Scholar 

  55. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32(8):2386–2395

    Article  CAS  Google Scholar 

  56. Niall HD (1973) Automated Edman degradation: the protein sequenator. Methods Enzymol 27:942–1010

    Article  CAS  Google Scholar 

  57. Nostro A, Scaffaro R, Ginestra G, D’Arrigo M, Botta L, Marino A, Bisignano G (2010) Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin. Appl Microbiol Biotechnol 87(2):729–737

    Article  CAS  Google Scholar 

  58. Orgaz B, Lobete MM, Puga CH, Jose CS (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12(1):817–828

    Article  CAS  Google Scholar 

  59. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28(3):449–461

    Article  Google Scholar 

  60. Pan Y, Breidt F Jr, Gorski L (2010) Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Appl Environ Microbiol 76(5):1433–1441

    Article  CAS  Google Scholar 

  61. Pan Y, Breidt F Jr, Kathariou S (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72(12):7711–7717

    Article  CAS  Google Scholar 

  62. Pan Y, Breidt F Jr, Kathariou S (2009) Competition of Listeria monocytogenes serotypes 1/2a and 4b strains in mixed-culture biofilms. Appl Environ Microbiol 75(18):5846–5852

    Article  CAS  Google Scholar 

  63. Pérez-Conesa D, Cao J, Chen L, McLandsborough L, Weiss J (2011) Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J Food Prot 74(1):55–62

    Article  Google Scholar 

  64. Popowska M, Markiewicz Z (2006) Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity. Arch Microbiol 186(1):69–86

    Article  CAS  Google Scholar 

  65. Pritchard DG, Dong S, Baker JR, Engler JA (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150(7):2079–2087

    Article  CAS  Google Scholar 

  66. Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S (2008) A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4(9):e1000146

    Article  Google Scholar 

  67. Renier S, Hébraud M, Desvaux M (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13(4):835–850

    Article  CAS  Google Scholar 

  68. Rieu A, Lemaître JP, Guzzo J, Piveteau P (2008) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126(1–2):76–82

    Article  CAS  Google Scholar 

  69. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203(1):173–179

    Article  CAS  Google Scholar 

  70. Saá Ibusquiza P, Herrera JJ, Cabo ML (2011) Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 28(3):418–425

    Article  Google Scholar 

  71. Sambrook J, Russell DW (2001) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press, 3rd edition, Cold Spring Harbor, NY

  72. Sandasi M, Leonard CM, Viljoen AM (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 50(1):30–35

    Article  CAS  Google Scholar 

  73. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage Φ11 and Φ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73(1):347–352

    Article  CAS  Google Scholar 

  74. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17(1):7–15

    Article  Google Scholar 

  75. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005

    Article  Google Scholar 

  76. Schmitz JE, Ossiprandi MC, Rumah KR, Fischetti VA (2011) Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl Microbiol Biotechnol 89(6):1783–1795

    Article  CAS  Google Scholar 

  77. Schmitz JE, Schuch R, Fischetti VA (2010) Identifying active phage lysins through functional viral metagenomics. Appl Environ Microbiol 76(21):7181–7187

    Article  CAS  Google Scholar 

  78. Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900):884–889

    Article  CAS  Google Scholar 

  79. Shen Y, Liu Y, Zhang Y, Cripe J, Conway W, Meng J, Hall G, Bhagwat AA (2006) Isolation and characterization of Listeria monocytogenes isolates from ready-to-eat foods in Florida. Appl Environ Microbiol 72(7):5073–5076

    Article  CAS  Google Scholar 

  80. Sillankorva S, Neubauer P, Azeredo J (2010) Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26(5):567–575

    Article  Google Scholar 

  81. Simmons M, Donovan DM, Siragusa GR, Seal BS (2010) Recombinant expression of two bacteriophage proteins that lyse Clostridium perfringens and share identical sequences in the C-terminal cell wall binding domain of the molecules but are dissimilar in their N-terminal active domains. J Agric Food Chem 58(19):10330–10337

    Article  CAS  Google Scholar 

  82. Smith LM, Sanders JZ, Kaiser RJ, Hughs P, Dodd C, Connell CR, Heines C, Kent SBH, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):673–681

    Article  Google Scholar 

  83. Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86(5):1439–1449

    Article  CAS  Google Scholar 

  84. Soni KA, Nannapaneni R (2010) Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot 73(8):1519–1524

    Google Scholar 

  85. Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9(10):1236–1243

    Article  Google Scholar 

  86. Swaminathan B (2001) Listeria monocytogenes. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers, 2nd edn. ASM Press, Washington, pp 337–352

    Google Scholar 

  87. Turner MS, Waldherr F, Loessner MJ, Giffard PM (2007) Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst Appl Microbiol 30(1):58–67

    Article  CAS  Google Scholar 

  88. Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32(2):259–286

    Article  CAS  Google Scholar 

  89. Wang L, Lin M (2008) A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. Microbiology 154(7):1900–1913

    Article  CAS  Google Scholar 

  90. Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997) Ribotypes and virulence gene polymorphism suggest three distinct Listeria monocytogenes lineages with differences in their pathogenic potential. Infect Immun 65(7):2707–2716

    CAS  Google Scholar 

  91. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermis biofilms on artificial surfaces. Antimicrob Agents Chemother 47(11):3407–3414

    Article  CAS  Google Scholar 

  92. Yala JF, Thebault P, Héquet A, Humblot V, Pradier CM, Berjeaud JM (2011) Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl Microbiol Biotechnol 89(3):623–634

    Article  CAS  Google Scholar 

  93. Zink R, Loessner MJ, Scherer S (1995) Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of the holin/endolysin gene. Microbiology 141(10):2577–2584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Agricultural Research Service (ARS), USDA CRIS project no. 6612-3200-046-00D, and the authors thank Ms. Johnna Garrish for excellent technical support. The authors acknowledge primary amino acid sequencing and mass spectrometry analyses of the recombinant proteins by Ms. Rebekah Woolsey and Dr. Kathleen Schegg at the University of Nevada, Reno (UNR) Proteomics Center, supported by NIH Grant Number P20 RR-016464 from the INBRE Program of the National Center for Research Resources, and Dr. David M. Donovan, ARS-USDA, for helpful discussions. All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Seal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, M., Morales, C.A., Oakley, B.B. et al. Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease. Probiotics & Antimicro. Prot. 4, 1–10 (2012). https://doi.org/10.1007/s12602-011-9084-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9084-5

Keywords

Navigation