Skip to main content
Log in

Comparison of Phenotypic and Genotypic Methods Used for the Species Identification of Lactobacillus NP51 and Development of a Strain-Specific PCR Assay

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The species level identity of Lactobacillus NP51, a commercial direct-fed microbial previously identified as Lactobacillus acidophilus NP51, was re-evaluated to determine whether new technologies resulted in changes in the original identification. The phenotypic methods for species identification included API 50 CHL kit and two automated systems, Vitek 2 and MIDI (FAME analysis; a total of three independent FAME analyses). Discrepancies among the identification results with all methods of phenotypic analysis were reported. MicroSeqID 500 16S rRNA system (SeqWright Inc., Houston, TX), a genotypic method, identified the organism as Lactobacillus animalis. Cloning, sequencing and subsequent sequence comparison of NP51 16S–23S intergenic spacer region (ISRs) to nucleotide sequence databases using the BLAST search tool indicated that NP51 can now be named L. animalis. When NP51 was originally identified as L. acidophilus, the designation of L. animalis did not exist taxonomically. The NP51 sequence comparisons using BLAST also revealed that NP51 and a strain previously identified as L. animalis LA51 HOFG1 by Flint and Angert are identical strains under different names. A strain-specific primer pair was also identified for HOFG1 by the same research group. A primer pair (using HOFG1 forward pair) also produced an amplicon unique to NP51. These methods demonstrate the significance of genetic-based detection methods both for scientific identification of organisms from biological samples and to prevent misidentification in food and health industry related microorganisms in which proprietary considerations are an important concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  2. Benito MJ, Serradilla MJ, Ruiz-Moyano S, MartÌn A, Perez-Nevado F, Cordoba MG (2008) Rapid differentiation of lactic acid bacteria from autochthonous fermentation of Iberian dry-fermented sausages. Meat Sci 80:656–661

    Article  CAS  Google Scholar 

  3. Brandt K, Alatossava T (2003) Specific identification of certain probiotic Lactobacillus rhamnosus strains with PCR primers based on phage-related sequences. Int J Food Microbiol 84:189–196

    CAS  Google Scholar 

  4. Brashears MM, Jaroni D, Trimble J (2003) Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in Cattle. J Food Prot 66:355–363

    CAS  Google Scholar 

  5. Brenner DJ, Staley JT, Krieg NR (2001) Classification of procaryotic organisms and the concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 27–32

    Google Scholar 

  6. Cai H, Rodriguez BT, Zhang W, Broadbent JR, Steele JL (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology 153:2655–2665

    Article  CAS  Google Scholar 

  7. Castellanos MI, Chauvet A, Deschamps A, Barreau C (1996) PCR methods for identification and specific detection of probiotic lactic acid bacteria. Curr Microbiol 33(2):100–103

    Article  CAS  Google Scholar 

  8. Cebeci A, Gurakan GC (2008) Molecular methods for identification of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus using methionine biosynthesis and 16S rRNA genes. J Dairy Res 75(4):392–398

    Article  CAS  Google Scholar 

  9. Coeuret V, Dubernet S, Bernardeau M, Gueguen M, Vernoux JP (2003) Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait 83:269–306

    Article  CAS  Google Scholar 

  10. Dent VE, Williams RAD (1982) Lactobacillus animalis sp. nov., a new species of Lactobacillus from the alimentary canal of animals. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig 3:377–387

    Google Scholar 

  11. Dewhirst FE, Chien C, Paster BJ, Ericson RL, Orcutt RP, Schauer DB, Fox JG (1999) Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 65(8):3287–3292

    CAS  Google Scholar 

  12. Dimitonova SP, Bakalov BV, Aleksandrova-Georgieva RN, Danova ST (2008) Phenotypic and molecular identification of lactobacilli isolated from vaginal secretions. J Microbiol Immunol Infect 41:469–477

    CAS  Google Scholar 

  13. Drake MA, Small CL, Spence KD, Swanson BG (1996) Differentiation of Lactobacillus helveticus strains using molecular typing methods. Food Res Int 29(5–6):451–455

    Article  CAS  Google Scholar 

  14. Elam NA, Gleghorn JF, Rivera JD, Galyean ML, Defoor PJ, Brashears MM, Younts-Dahl SM (2003) Effects of live cultures of Lactobacillus acidophilus (strains NP45 and NP51) and Propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and Escherichia coli strain O157 shedding of finishing beef steers. J Anim Sci 81:2686–2698

    CAS  Google Scholar 

  15. Flint JF, Angert ER (2005) Development of a strain-specific assay for detection of viable Lactobacillus sp. HOFG1 after application to cattle feed. J Microbiol Methods 61:235–243

    Article  CAS  Google Scholar 

  16. Fontana C, Favaro M, Pelliccioni M, Pistoia ES, Favalli C (2005) Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol 43(2):615–619

    Article  CAS  Google Scholar 

  17. Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K (2008) Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol 126:210–215

    Article  CAS  Google Scholar 

  18. Gilarova R, Voldrich M, Demnerova K, Cerovsky M, Dobias J (1994) Cellular fatty acids analysis in the identification of lactic acid bacteria. Int J Food Microbiol 24(1–2):315–319

    Article  CAS  Google Scholar 

  19. Gurtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3–16

    Article  Google Scholar 

  20. Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S

    CAS  Google Scholar 

  21. Kim M, Heo SR, Choi SH, Kwon H, Park JS, Seong M, Lee DH, Park KU, Song J, Kim E (2008) Comparison of the MicroScan, VITEK 2, and Crystal GP with 16S rRNA sequencing and MicroSeq 500 v2.0 analysis for coagulase-negative Staphylococci. BMC Microbiol 8(233)

  22. Klaenhammer TR (1998) Functional activities of Lactobacillus probiotics: genetic mandate. Int Dairy J 8(5–6):497–505

    Article  CAS  Google Scholar 

  23. Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41(2):103–125

    Article  CAS  Google Scholar 

  24. Kwon HS, Yang EH, Yeon SW, Kang BH, Kim TY (2004) Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett 239(2):267–275

    Article  CAS  Google Scholar 

  25. Lick S (2003) Review: typing systems for lactobacilli. Milchwissenschaft 58:256–260

    CAS  Google Scholar 

  26. Ligozzi M, Bernini C, Bonora MG, Fatima Md, Zuliani J, Fontana R (2002) Evaluation of the VITEK 2 System for identification and antimicrobial susceptibility testing of medically relevant Gram-positive cocci. J Clin Microbiol 40(5):1681–1686

    Article  CAS  Google Scholar 

  27. McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the Bifidobacterial and Lactobacillus microflora of humans. Appl Environ Microbiol 62(12):4608–4613

    CAS  Google Scholar 

  28. McLeod A, Nyquist OL, Snipen L, Naterstad K, Axelsson L (2008) Diversity of Lactobacillus sakei strains investigated by phenotypic and genotypic methods. Syst Appl Microbiol 31(5):393–403

    Article  CAS  Google Scholar 

  29. Moreira JLS, Mota RM, Horta MF, Teixeira SMR, Neumann E, Nicoli JR, Nunes ÁC (2005) Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S–23S rRNA restriction profiling. BMC Microbiol 5(15)

  30. Morelli L, Callegari ML (2005) Taxonomy and biology of probiotics. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. CRC Press, Boca Raton, pp 67–83

    Google Scholar 

  31. Nigatu A (2000) Evaluation of numerical analyses of RAPD and API 50 CH patterns to differentiate Lactobacillus plantarum, Lact. fermentum, Lact. rhamnosus, Lact. sake, Lact. parabuchneri, Lact. gallinarum, Lact. casei, Weissella minor and related taxa isolated from kocho and tef. J Appl Microbiol 89(6):969–978

    Article  CAS  Google Scholar 

  32. O’Hara CM (2005) Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic Gram-negative bacilli. Clin Microbiol Rev 18(1):147–162

    Article  Google Scholar 

  33. Park SH, Itoh K (2005) Species-specific oligonucleotide probes for the detection and identification of Lactobacillus isolated from mouse faeces. J Appl Microbiol 99(1):51–57

    Article  CAS  Google Scholar 

  34. Patel JB, Leonard DGB, Pan X, Musser JM, Berman RE, Nachamkin I (2000) Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38(1):246–251

    CAS  Google Scholar 

  35. Peterson RE, Klopfenstein TJ, Erickson GE, Folmer J, Hinkley S, Moxley RA, Smith DR (2007) Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 fecal shedding and finishing performance in beef feedlot cattle. J Food Prot 70:287–291

    CAS  Google Scholar 

  36. Pontes DS, Lima-Bittencourt CI, Chartone-Souza E, Nascimento AMA (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol 34(7):463–473

    Article  CAS  Google Scholar 

  37. Pot B, Tsakalidou S (2009) Taxonomy and metabolism of Lactobacillus. In: Ljungh A, Wadstrom T (eds) Lactobacillus molecular biology: from genomics to probiotics. Caister Academic Press, Norfolk, pp 3–58

    Google Scholar 

  38. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R (2007) Polyphasic approach of bacterial classification–an overview of recent advances. Indian J Microbiol 47:98–108

    Article  CAS  Google Scholar 

  39. Rementzis J, Samelis J (1996) Rapid GC analysis of cellular fatty acids for characterizing Lactobacillus sake and Lact. curvatus strains of meat origin. Lett Appl Microbiol 23(6):379–384

    Article  CAS  Google Scholar 

  40. Rizzo AF, Korkeala H, Mononen I (1987) Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of Lactobacilli. Appl Environ Microbiol 53(12):2883–2888

    CAS  Google Scholar 

  41. Roy D, Ward P, Vincent D, Moundou F (2000) Molecular identification of potentially probiotic Lactobacilli. Curr Microbiol 40:40–46

    Article  CAS  Google Scholar 

  42. Sanchez I, SeseÒa S, Poveda JM, Cabezas L, Palop L (2005) Phenotypic and genotypic characterization of lactobacilli isolated from Spanish goat cheeses. Int J Food Microbiol 102(3):355–362

    Article  CAS  Google Scholar 

  43. Schleifer KH, Ehrmann M, Beimfohr C, Brockmann E, Ludwig W, Amann R (1995) Application of molecular methods for the classification and identification of lactic acid bacteria. Int Dairy J 5(8):1081–1094

    Article  CAS  Google Scholar 

  44. Schleifer KH, Ludwig W (1994) Molecular taxonomy: classification and identification. In: Priest FG, Ramos-Cormenzana A, Tindall BJ (eds) Bacterial diversity and systematics. Plenum, New York, pp 1–15

    Google Scholar 

  45. Smith L, Mann JE, Harris K, Miller MF, Brashears MM (2005) Reduction of Escherichia coli O157:H7 and Salmonella in ground beef using lactic acid bacteria and the impact on sensory properties. J Food Prot 68:1587–1592

    Google Scholar 

  46. Song Y, Kato N, Liu C, Matsumiya Y, Kato H, Watanabe K (2000) Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett 187(2):167–173

    CAS  Google Scholar 

  47. Stephens TP, Loneragan GH, Chichester LM, Brashears MM (2007) Prevalence and enumeration of Escherichia coli O157 in steers receiving various strains of Lactobacillus-based direct-fed microbials. J Food Prot 70(5):1252–1255

    CAS  Google Scholar 

  48. Stephens TP, Loneragan GH, Karunasena E, Brashears MM (2007) Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. J Food Prot 70(10):2386–2391

    CAS  Google Scholar 

  49. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29

    Article  CAS  Google Scholar 

  50. Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K, Alatossava T (1999) Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S–23S rRNA gene intergenic spacer region sequence comparisons. Appl Environ Microbiol 65(9):4264–4267

    CAS  Google Scholar 

  51. Tilsala-Timisjarvi A, Alatossava T (1997) Development of oligonucleotide primers from the 16S–23S rRNA intergenic sequences for identifying different dairy and probiotic lactic acid bacteria by PCR. Int J Food Microbiol 35:49–56

    Article  CAS  Google Scholar 

  52. Tilsala-Timisjärvi A, Alatossava T (1998) Strain-specific identification of probiotic Lactobacillus rhamnosus with randomly amplified polymorphic DNA-derived PCR primers. Appl Environ Microbiol 64(12):4816–4819

    Google Scholar 

  53. Tynkkynen S, Satokari R, Saarela M, Mattila-Sandholm T, Saxelin M (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 65(9):3908–3914

    CAS  Google Scholar 

  54. Vandamme P, Pot B, Gillis M, Vos PD, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60(2):407–438

    CAS  Google Scholar 

  55. Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton C (2006) Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol 59(1):127–137

    Google Scholar 

  56. Wallet F, Loïez C, Renaux E, Lemaitre N, Courcol RJ (2005) Performances of VITEK 2 colorimetric cards for identification of Gram-positive and Gram-negative bacteria. J Clin Microbiol 43(9):4402–4406

    Article  Google Scholar 

  57. Wauthoz P, El Lioui M, Decallonne J (1995) Gas chromatographic analysis of cellular fatty acids in the identification of foodborne bacteria. J Food Prot 58:1234–1240

    CAS  Google Scholar 

  58. Weiss A, Lettner HP, Kramer W, Mayer HK, Kneifel W (2005) Molecular methods used for the identification of potentially probiotic Lactobacillus reuteri strains. Food Technol Biotechnol 43(3):295–300

    CAS  Google Scholar 

  59. Woo PC, Ng KH, Lau SK, Yip KT, Fung AM, Leung KW, M., TD, Que, TL, and Y.Yuen, K (2003) Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41(5):1996–2001

  60. Yeung PSM, Sanders ME, Kitts CL, Cano R, Tong PS (2002) Species-specific identification of commercial probiotic strains. J Dairy Sci 85:1039–1051

    Article  CAS  Google Scholar 

  61. Younts-Dahl SM, Galyean ML, Loneragan GH, Elam NA, Brashears MM (2004) Dietary supplementation with Lactobacillus- and Propionibacterium-based direct-fed microbials and prevalence of Escherichia coli O157 in beef feedlot cattle and on hides at harvest. J Food Prot 67(5):889–893

    CAS  Google Scholar 

  62. Younts-Dahl SM, Osborn GD, Galyean ML, Rivera JD, Loneragan GH, Brashears MM (2005) Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials. J Food Prot 68(1):6–10

    Google Scholar 

Download references

Acknowledgments

The authors thank Nutrition Physiology Corporation (NPC) for providing financial support for this project and the International Center of Food Industry Excellence (ICFIE) at Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Karunasena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randhawa, S., Brashears, M.M., McMahon, K.W. et al. Comparison of Phenotypic and Genotypic Methods Used for the Species Identification of Lactobacillus NP51 and Development of a Strain-Specific PCR Assay. Probiotics & Antimicro. Prot. 2, 274–283 (2010). https://doi.org/10.1007/s12602-010-9057-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9057-0

Keywords

Navigation