Skip to main content
Log in

Physiological and Structural Differences Between Enterococcus faecalis JH2-2 and Mutant Strains Resistant to (P)-Divercin RV41

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The aim of this study was to show the differences that could exist at the physiological and structural levels between Enterococcus faecalis JH2-2 (wild type) and three mutant strains resistant to divercin RV41. These mutant strains were recently isolated and characterized for their intermediate resistance to recombinant DvnRV41; a subclass IIa bacteriocin produced by Escherichia coli. These mutant strains were named 35A1 (altered in gene coding phosphoesterase activity), 35H1 (altered in gene coding σ54 factor) and 36H4 (altered in gene coding glycerophosphodiesterase). The growth and resistance of each strain were tested against lysozyme. The inhibitory substance did not show any cross-resistance but exhibited an additive effect ascribed to the combined action of lysozyme and (P)-DvnRV41. The use of Fourier transform infrared spectroscopy (FT-IR) allowed to unravelling differences at the structural levels between the aforementioned strains. Thus, mutants 35H1 and 36H4 showed clear differences from mutant 35A1 and wild-type strain. These differences were located, mainly in the fatty acid region and in the polysaccharide composition. This study contributes to understanding more the resistance/sensitivity of Ent. faecalis to (P)-DvnRV41, a subclass IIa bacteriocin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calvez S, Rince A, Auffray Y, Prevost H, Drider D (2007) Identification of new genes associated with intermediate resistance of Enterococcus faecalis to divercin V41, a pediocin-like bacteriocin. Microbiol (UK) 153:1609–1618

    Article  CAS  Google Scholar 

  2. Chesbro WR (1961) Lysozyme and the production of osmotic fragility in Entorococci. Can J Microbiol 7:952–955

    Article  CAS  Google Scholar 

  3. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  4. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  5. Dalet K, Briand C, Cenatiempo Y, Hechard Y (2000) The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443

    Article  CAS  Google Scholar 

  6. Dalet K, Cenatiempo Y, Cossart P, Hechard Y (2001) A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiol (UK) 147:3263–3269

    CAS  Google Scholar 

  7. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  Google Scholar 

  8. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 4:85–106

    Article  Google Scholar 

  9. Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH (2001) Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol 67:4385–4439

    Article  CAS  Google Scholar 

  10. Hechard Y, Pelletier C, Cenatiempo Y, Frere J (2001) Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiol (UK) 147:1575–1580

    CAS  Google Scholar 

  11. Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137:69–79

    CAS  Google Scholar 

  12. Huycke MM, Sahm DF, Gilmore MS (1998) Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4:239–249

    Article  CAS  Google Scholar 

  13. Ibrahim HR, Aoki T, Pellegrini A (2002) Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Curr Pharm Des 8:671–693

    Article  CAS  Google Scholar 

  14. Ingham A, Ford M, Moore RJ, Tizard M (2003) The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J Antimicrob Chemother 6:1365–1371

    Article  Google Scholar 

  15. Kheadr E, Bernoussi N, Lacroix C, Fliss I (2004) Comparison of the sensitivity of commercial strains and infant isolates of bifidobacteria to antibiotics and bacteriocins. Int Dairy J 14:273–285

    Article  Google Scholar 

  16. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    CAS  Google Scholar 

  17. Kohler A, Kirschner C, Oust A, Martens H (2005) Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Appl Spectroscopy 59:707–716

    Article  CAS  Google Scholar 

  18. Limonet M, Revol-Junelles AM, Milliere JB (2002) Variations in the membrane fatty acid composition of resistant or susceptible Leuconostoc or Weissella strains in the presence or absence of Mesenterocin 52A and Mesenterocin 52B produced by Leuconostoc mesenteroides subsp. mesenteroides FR52. Appl Environ Microbiol 68:2910–2916

    Article  CAS  Google Scholar 

  19. Martens H, Stark E (1991) Extended multiplicative signal correction and spectral interference subtraction—new preprocessing methods for near-infrared spectroscopy. J Pharma BioAnal 9:625–635

    Article  CAS  Google Scholar 

  20. Metivier A, Pilet MF, Dousset X, Sorokine O, Anglade P, Zagorec M, Piard JC, Marion D, Cenatiempo Y, Frémaux C (1998) Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiol (UK) 144:2837–2844

    Article  CAS  Google Scholar 

  21. Minahk CJ, Dupuy F, Morero RD (2004) Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35. J Antimicrob Chemother 53:240–246

    Article  CAS  Google Scholar 

  22. Naghmouchi K, Drider D, Kheadr E, Lacroix C, Prevost H, Fliss I (2006) Multiple characterizations of Listeria monocytogenes sensitive and insensitive mutants to divergicin M35, a new pediocin-like bacteriocin. J Appl Microbiol 100:29–39

    Article  CAS  Google Scholar 

  23. Næs T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester

    Google Scholar 

  24. Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61

    Article  CAS  Google Scholar 

  25. Oust A, Møretrø T, Naterstad K, Sockalingum GD, Adt I, Manfait M, Kohler A (2006) FT-IR spectroscopy and Raman microspectroscopy for characterisation of Listeria monocytogenes strains. Appl Environ Microbiol 72:228–232

    Article  CAS  Google Scholar 

  26. Pilet MF, Dousset X, Barre R, Novel G, Desmazaud M, Piard JC (1995) Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J Food Pro 58:256–262

    Google Scholar 

  27. Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101

    Article  CAS  Google Scholar 

  28. Ramnath M, Arous S, Gravensen A, Hastings JW, Hechard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiol (UK) 150:2663–2668

    Article  CAS  Google Scholar 

  29. Richard C, Drider D, Elmorjani K, Marion D, Prevost H (2004) Heterologous expression and purification of active Divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 186:4276–4284

    Article  CAS  Google Scholar 

  30. Rihakova J, Cappelier JM, Hue I, Demnerova K, Federighi M, Prevost H, Drider D (2009) In vivo activity of recombinant Divercin V41 and its structural mutants against Listeria monocytogenes. Antimicrob Agents Chemother 54:563–564

    Google Scholar 

  31. Robichon D, Gouin E, Débarbouille M, Cossart P, Cenatiempo Y, Hechard Y (1997) The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179:7591–7594

    CAS  Google Scholar 

  32. Sakayori Y, Muramatsu M, Hanada S, Kamagata Y, Kawamoto S, Shima J (2003) Characterization of Enterococcus faecium mutants resistant to mundticin KS, a class IIa bacteriocin. Microbiol (UK) 149:2901–2908

    Article  CAS  Google Scholar 

  33. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  34. Shankar N, Baghdayan AS, Willems R, Hammerum AM, Jensen LB (2006) Presence of pathogenicity island genes in Enterococcus faecalis isolates from pigs in Denmark. J Clin Microbiol 44:4200–4203

    Article  CAS  Google Scholar 

  35. Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 29:807–813

    CAS  Google Scholar 

  36. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LM (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25:508–5013

    Article  CAS  Google Scholar 

  37. Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 8:5223–5230

    Article  Google Scholar 

  38. Wachsman MB, Farias ME, Takeda E, Sesma F, de Ruiz Holgado AP, de Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL35 against herpes viruses. Int J Antimicrob Agents 12:293–299

    Article  CAS  Google Scholar 

  39. Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58:17–24

    Article  CAS  Google Scholar 

  40. Yagi Y, Clewell DB (1980) Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol 143:966–970

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by “La Région des Pays de la Loire” and the European Union through VANAM II and the 6th PCRD, SEAFOOD plus project, respectively. Ségolène Calvez received a PhD grant awarded by “La Région des Pays de la Loire”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Calvez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvez, S., Kohler, A., Prévost, H. et al. Physiological and Structural Differences Between Enterococcus faecalis JH2-2 and Mutant Strains Resistant to (P)-Divercin RV41. Probiotics & Antimicro. Prot. 2, 226–232 (2010). https://doi.org/10.1007/s12602-010-9048-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9048-1

Keywords

Navigation