Skip to main content
Log in

Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Plantaricin 423, produced by Lactobacillus plantarum 423, was encapsulated in nanofibers that were produced by the electrospinning of 18% (w/v) polyethylene oxide (200 000 Da). The average diameter of the nanofibers was 288 nm. Plantaricin 423 activity decreased from 51 200 AU/ml to 25 600 AU/ml and from 204 800 AU/ml to 51 200 AU/ml after electrospinning, as determined against Lactobacillus sakei DSM 20017 and Enterococcus faecium HKLHS, respectively. Cells of L. plantarum 423 encapsulated in nanofibers decreased from 2.3 × 1010 cfu/ml before electrospinning to 4.7 × 108 cfu/ml thereafter. Cells entrapped in the nanofibers continued to produce plantaricin 423. This is the first report on the encapsulation of a bacteriocin and cells of L. plantarum in nanofibers. The method may be used to design a drug delivery system for bacteriocins and the encapsulation of probiotic lactic acid bacteria. The technology is currently being optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  CAS  Google Scholar 

  2. Alterman E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TD (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Nat Acad Sci (USA) 102:3906–3912

    Article  Google Scholar 

  3. Botes M, Van Reenen CA, Dicks LMT (2008) Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with milk formulations as substrate. Int J Food Microbiol 128:362–370

    Article  CAS  Google Scholar 

  4. Caridi A (2002) Selection of Escherichia coli-inhibiting strains of Lactobacillus paracasei subsp. paracasei. J Ind Microbiol Biotechnol 29:303–308

    Article  CAS  Google Scholar 

  5. Chew SJ, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024

    Article  CAS  Google Scholar 

  6. De Kwaadsteniet M, Ten Doeschate K, Dicks LMT (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48:65–70

    Article  Google Scholar 

  7. De Kwaadsteniet M, Van Reenen CA, Dicks LMT (2009b) Evaluation of nisin F in the treatment of subcutaneous skin infections as monitored by using a bioluminescent strain of Staphylococcus aureus. Prob Antimicrob Prot. doi:10.1007/s12602-009-9017-8

  8. De Vriese MC, Vaughan EE, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028

    Article  Google Scholar 

  9. De Vuyst L, Vandamme EJ (1994) Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and application. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Chapman and Hall, USA, pp 151–221

    Google Scholar 

  10. Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24

    Article  CAS  Google Scholar 

  11. Gensheimer M, Becker M, Brandis-Heep A, Wendorff JH, Thauer RK, Greiner A (2007) Novel biohybrid materials by electrospinning: nanofibers of poly(ethylene oxide) and living bacteria. Adv Mater 19:2480–2482

    Article  CAS  Google Scholar 

  12. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide amphiphile nanofibers. Science 294:1684–1688

    Article  CAS  Google Scholar 

  13. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their application in nanocomposites. Comp Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  14. Ivanova I, Miteva V, Stefanova TS, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42:147–158

    Article  CAS  Google Scholar 

  15. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  CAS  Google Scholar 

  16. Kim TG, Lee DS, Park TG (2007) Controlled protein release from electrospun biodegradable fiber mesh composed of poly(ε-caprolactone) and poly(ethylene oxide). Int J Pharm 338:276–283

    Article  CAS  Google Scholar 

  17. Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, De Vries M, Ursing B, De Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Nat Acad Sci USA 100(4):1990–1995

    Article  CAS  Google Scholar 

  18. Kokai-Kun JF, Walsh SM, Chanturiya T, Mond JJ (2003) Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob Agents Chemother 47:1589–1597

    Article  CAS  Google Scholar 

  19. Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653

    Article  CAS  Google Scholar 

  20. Li Y, Jiang H, Zhu K (2008) Encapsulation and controlled release of lysozyme from electrospun poly(ε-caprolactone)/poly(ethylene glycol) non-woven membranes by formation of lysozyme-oleate complexes. J Mater Sci Mater Med 19:827–832

    Article  Google Scholar 

  21. Liang D, Hsiao BJ, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Revs 59:1392–1412

    Article  CAS  Google Scholar 

  22. Mare L, Wolfaardt GM, Dicks LMT (2006) Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent in situ hybridisation (FISH) and production of plantaricin 423 by cells colonised to the ileum. J Appl Microbiol 100:838–845

    Article  CAS  Google Scholar 

  23. Maretschek S, Greiner A, Kissel T (2008) Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 127:180–187

    Article  CAS  Google Scholar 

  24. Messi P, Bondi M, Sabia C, Battini R, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198

    Article  CAS  Google Scholar 

  25. Nagai Y, Unswoth LD, Koutospoulos S, Zhang S (2006) Slow release of molecules in self–assembling peptide nanofiber scaffold. J Control Release 115:18–25

    Article  CAS  Google Scholar 

  26. Pender MJ, Sneddon LG (2000) An efficient template synthesis of aligned boron carbide nanofibers using a single-source molecular precursor. Chem Mater 12:280–283

    Article  CAS  Google Scholar 

  27. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet A-C, Zwahlen M-C, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schnell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Nat Acad Sci USA 101:2512–2517

    Article  CAS  Google Scholar 

  28. Ramiah K, Van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes mub and mapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423 monitored with real-time PCR. Int J Food Microbiol 116:405–409

    Article  CAS  Google Scholar 

  29. Ramiah K, Ten Doeschate K, Smith R, Dicks LMT (2009) Safety assessment of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA determined in trials with Wistar rats. Prob Antimicrob Prot 1:15–23

    Article  CAS  Google Scholar 

  30. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  Google Scholar 

  31. Sambrook JE, Fritsch F, Maniatis J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  32. Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164

    Article  CAS  Google Scholar 

  33. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    Article  CAS  Google Scholar 

  34. Tahara T, Kanatani K (1997) Isolation, partial characterization of crispacin A, a cell-associated bacteriocin produced by Lactobacillus crispatus JCM 2009. FEMS microbiol Letts 147:287–290

    Article  CAS  Google Scholar 

  35. Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Letts 84(9):1603–1605

    Article  CAS  Google Scholar 

  36. Taylor GI (1969) Electrically driven jets. Proc Royal Soc Lond A 313:453–475

    Article  Google Scholar 

  37. Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against gram-negative bacteria. Enz Microb Technol 36:318–326

    Article  CAS  Google Scholar 

  38. Todorov SD, Dicks LMT (2005) Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J Basic Microbiol 45:312–322

    Article  CAS  Google Scholar 

  39. Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  Google Scholar 

  40. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836–4846

    Article  CAS  Google Scholar 

  41. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231

    Article  CAS  Google Scholar 

  42. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Cipla Medpro (Pty) Ltd and the National Research Foundation, South Africa, for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. T. Dicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heunis, T.D.J., Botes, M. & Dicks, L.M.T. Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers. Probiotics & Antimicro. Prot. 2, 46–51 (2010). https://doi.org/10.1007/s12602-009-9024-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-009-9024-9

Keywords

Navigation