Probiotics and Antimicrobial Proteins

, Volume 1, Issue 1, pp 60–66 | Cite as

Streptococcal Bacteriocin-Like Inhibitory Substances: Some Personal Insights into the Bacteriocin-Like Activities Produced by Streptococci Good and Bad

Article

Abstract

The background to the discovery and commercial development of the first Streptococcus salivarius probiotic is documented. A 40-year search of the genus Streptococcus for a harmless natural antagonist of Streptococcus pyogenes had as its operational basis a simple deferred antagonism “fingerprinting” procedure, the application of which results in each tested strain being accorded an inhibitor production (P)-type and inhibitor sensitivity (S)-type profile. Systematic application of this schema has opened a “Pandora’s Box” of novel streptococcal bacteriocin-like inhibitory substances (BLIS). The numerically prominent commensal S. salivarius is proposed to have a pivotal population-modulating role within the oral microbiota of humans. The probiotic strain S. salivarius K12 produces several megaplasmid-encoded BLIS including the lantibiotics salivaricin A and salivaricin B. Strain K12 and other BLIS-producing S. salivarius are currently in use or under development for application to the control of a variety of common maladies and infections of the human oral cavity.

Keywords

Bacteriocins Bacteriocin-like inhibitory substances BLIS Streptococci Probiotic Lantibiotic 

References

  1. 1.
    Burton J, Chilcott C, Tagg J (2005) The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis 11:29–31PubMedCrossRefGoogle Scholar
  2. 2.
    Burton JP, Chilcott CN, Moore CJ, Speiser G, Tagg JR (2006) A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodor parameters. J Appl Microbiol 100:754–764PubMedCrossRefGoogle Scholar
  3. 3.
    Burton JP, Wescombe PA, Tagg JR, Chilcott CN (2006) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72:3050–3053PubMedCrossRefGoogle Scholar
  4. 4.
    Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, Yu LL, Pistolic J, Falsafi R, Tagg J, Hancock RE (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175PubMedCrossRefGoogle Scholar
  5. 5.
    Dierksen KP, Tagg JR (2000) The influence of indigenous bacteriocin-producing Streptococcus salivarius on the acquisition of Streptococcus pyogenes by primary school children in Dunedin, New Zealand. In: Martin DR, Tagg JR (eds) Streptococci and streptococcal diseases: entering the new millennium. Securacopy, Auckland, pp 81–85Google Scholar
  6. 6.
    Dierksen KP, Moore CJ, Inglis M, Wescombe PA, Tagg JR (2007) The effect of ingestion of milk supplemented with salivaricin A-producing Streptococcus salivarius on the bacteriocin-like inhibitory activity of streptococcal populations on the tongue. FEMS Microbiol Ecol 59:584–591PubMedCrossRefGoogle Scholar
  7. 7.
    Hale JDF, Balakrishnan M, Tagg JR (2004) Genetic basis for mutacin N and of its relationship to mutacin I. Indian J Med Res 119(Suppl):247–251PubMedGoogle Scholar
  8. 8.
    Hale JDF, Ting YT, Jack RW, Tagg JR, Heng NCK (2005) Bacteriocin (mutacin) production by Streptococcus mutans UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol 71:7613–7617PubMedCrossRefGoogle Scholar
  9. 9.
    Heng NCK, Burtenshaw GA, Jack RW, Tagg JR (2004) Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52:225–229PubMedCrossRefGoogle Scholar
  10. 10.
    Heng NCK, Ragland NL, Swe PM, Baird HJ, Inglis MA, Tagg JR, Jack RW (2006) Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152:1991–2001PubMedCrossRefGoogle Scholar
  11. 11.
    Heng NCK, Swe PM, Ting Y-T, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR (2006) The large antimicrobial proteins (bacteriocins) of streptococci. In: XVIth Lancefield international symposium on streptococci and streptococcal diseases, Palm Cove, Australia, 25–29 September 2005. International congress series, vol 1289, pp 351–354Google Scholar
  12. 12.
    Heng NCK, Burtenshaw GA, Jack RW, Tagg JR (2007) Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl Environ Microbiol 73:7763–7766PubMedCrossRefGoogle Scholar
  13. 13.
    Heng NCK, Tagg JR, Tompkins GR (2007) Competence-dependent bacteriocin production by Streptococcus gordonii DL1 (Challis). J Bacteriol 189:1468–1472PubMedCrossRefGoogle Scholar
  14. 14.
    Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins produced by gram-positive bacteria. In: Riley MA, Chavan M (eds) Evolution and ecology of bacteriocins. Springer, New York, pp 45–92CrossRefGoogle Scholar
  15. 15.
    Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–244PubMedCrossRefGoogle Scholar
  16. 16.
    Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded by adjacent loci on a 190 kb transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73:1107–1113PubMedCrossRefGoogle Scholar
  17. 17.
    Jack RW, Carne A, Metzger J, Stefanovic S, Sahl H-G, Jung G, Tagg JR (1994) Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur J Biochem 220:455–462PubMedCrossRefGoogle Scholar
  18. 18.
    Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41:558–563PubMedCrossRefGoogle Scholar
  19. 19.
    Liljemark WF, Gibbons RJ (1973) Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect Immun 8:846–849PubMedGoogle Scholar
  20. 20.
    Pasteur L, Joubert JF (1877) Charbon et septicemie. C R Soc Biol Paris 85:101–115Google Scholar
  21. 21.
    Phelps HA, Neely MN (2007) SalY of the Streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infect Immun 75:4541–4551PubMedCrossRefGoogle Scholar
  22. 22.
    Power DA, Burton JP, Chilcott CN, Dawes PJ, Tagg JR (2008) Preliminary investigations of the colonisation of upper respiratory tract tissues of infants using a paediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis 27:1261–1263PubMedCrossRefGoogle Scholar
  23. 23.
    Robson CL, Wescombe PA, Klesse NA, Tagg JR (2007) Isolation and partial characterisation of the Streptococcus mutans type AII lantibiotic mutacin K8. Microbiology 153:1631–1641PubMedCrossRefGoogle Scholar
  24. 24.
    Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59:2014–2021PubMedGoogle Scholar
  25. 25.
    Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255–261PubMedCrossRefGoogle Scholar
  26. 26.
    Simpson WJ, Tagg JR (1983) M-type 57 group A streptococcus bacteriocin. Can J Microbiol 29:1445–1451PubMedCrossRefGoogle Scholar
  27. 27.
    Sklavounou A, Germaine GR (1980) Adherence of oral streptococci to keratinized and nonkeratinized human oral epithelial cells. Infect Immun 27:686–689PubMedGoogle Scholar
  28. 28.
    Swe PM, Heng NC, Ting YT, Baird HJ, Carne A, Tauch A, Tagg JR, Jack RW (2007) ef1097 and ypkK encode enterococcin V583 and corynicin JK, members of a new family of antimicrobial proteins (bacteriocins) with modular structure from Gram-positive bacteria. Microbiology 153:3218–3227PubMedCrossRefGoogle Scholar
  29. 29.
    Tagg JR (1991) Studies of “BLIS-ful” oral bacteria. N Z Dent J 87:14–16PubMedGoogle Scholar
  30. 30.
    Tagg JR (1992) BLIS production in the genus Streptococcus. In: James R, Lazdunski C, Pattus F (eds) Bacteriocins, microcins and lantibiotics. Springer-Verlag, Heidelberg, pp 417–420Google Scholar
  31. 31.
    Tagg JR (2004) Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J Med Res 119(Suppl):13–16PubMedGoogle Scholar
  32. 32.
    Tagg JR, Bannister LV (1979) ”Fingerprinting” ß-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol 12:397–411PubMedCrossRefGoogle Scholar
  33. 33.
    Tagg JR, McGiven AR (1972) Some possible autoimmune mechanisms in rheumatic carditis. Lancet 2:686–688PubMedCrossRefGoogle Scholar
  34. 34.
    Tagg JR, Mushin R (1971) Epidemiology of Pseudomonas aeruginosa infection in hospitals. 1. Pyocine typing of Ps. aeruginosa. Med J Aust 1:847–852PubMedGoogle Scholar
  35. 35.
    Tagg JR, Wannamaker LW (1978) Streptococcin A-FF22: nisin-like antibiotic substance produced by a group A streptococcus. Antimicrob Agents Chemother 14:31–39PubMedGoogle Scholar
  36. 36.
    Tagg JR, Read RSD, McGiven AR (1971) Bacteriocine production by group A streptococci. Pathology 3:277–278CrossRefGoogle Scholar
  37. 37.
    Tagg JR, Dajani AS, Wannamaker LW (1975) Bacteriocin of a group B streptococcus: partial purification and characterization. Antimicrob Agents Chemother 7:764–772PubMedGoogle Scholar
  38. 38.
    Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756PubMedGoogle Scholar
  39. 39.
    Tompkins GR, Tagg JR (1989) The ecology of bacteriocin-producing strains of Streptococcus salivarius. Microb Ecol Health Dis 2:19–28CrossRefGoogle Scholar
  40. 40.
    Walls T, Power D, Tagg J (2003) Bacteriocin-like inhibitory substance (BLIS) production by the normal flora of the nasopharynx: potential to protect against otitis media? J Med Microbiol 52:829–833PubMedCrossRefGoogle Scholar
  41. 41.
    Wescombe PA, Tagg JR (2003) Purification and characterisation of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69:2737–2747PubMedCrossRefGoogle Scholar
  42. 42.
    Wescombe PA, Heng NCK, Jack RW, Tagg JR (2005) Bacteriocins associated with cytotoxicity for eukaryotic cells. In: Proft T (ed) Microbial toxins, a critical review. Horizon Press, Wymondham, pp 399–448Google Scholar
  43. 43.
    Wescombe PA, Burton JP, Cadieux PA, Klesse NA, Hyink O, Heng NCK, Chilcott CN, Reid G, Tagg JR (2006) Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek 90:269–280PubMedCrossRefGoogle Scholar
  44. 44.
    Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan R, Inglis M, Moore CJ, Walker GV, Chilcott C, Jenkinson HF, Tagg JR (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and the use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–1466PubMedCrossRefGoogle Scholar
  45. 45.
    Wirawan RE, Klesse NA, Jack RW, Tagg JR (2006) The production and characterization of a novel nisin variant by Streptococcus uberis. Appl Environ Microbiol 72:1148–1156PubMedCrossRefGoogle Scholar
  46. 46.
    Wirawan RE, Swanson KM, Kleffman T, Jack RW, Tagg JR (2007) Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:1619–1630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations