Skip to main content
Log in

A Review: Marine Bio-logging of Animal Behaviour and Ocean Environments

  • Review
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Recent technologies have allowed researchers to observe animal behaviour and monitor their surrounding environments by deploying electronic sensors onto the animals. So-called ‘bio-logging’ (also known as animal telemetry, biotelemetry, or animal-borne sensors) has been widely used to study marine animals that are difficult for humans to observe. In this study, we (1) review the types of sensors used, the animal taxa studied, and the study areas in marine bio-logging publications from 1974 to 2019; (2) introduce the main topics in behavioural and environmental marine bio-logging studies; and (3) discuss suggestions for future marine bio-logging studies. We expect that technological advances in new sensors will enhance the ability of both behavioural ecologists and oceanographers to explore animal movements, physiology and marine environments. In addition, we discuss future perspectives of bio-loggers to improve data acquisition and accuracy with longer battery life for applying bio-logging techniques to broader species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amlaner CJ, Macdonald DW (1980) A handbook on biotelemetry and radio tracking. Pergamon Press, Oxford, 824 p

    Google Scholar 

  • Barrionuevo M, Ciancio J, Steinfurth A, Frere E (2020) Geolocation and stable isotopes indicate habitat segregation between sexes in Magellanic penguins during the winter dispersion. J Avian Biol 51(2):e02325. https://doi.org/10.1111/jav.02325

    Article  Google Scholar 

  • Bengtson JL, Hill R, Hill S (1993) Using satellite telemetry to study the ecology and behavior of Antarctic seals. Kor J Polar Res 4(2):109–115

    Google Scholar 

  • Biddle L, Swart S (2020) The observed seasonal cycle of submesoscale processes in the Antarctic marginal ice zone. J Geophys Res-Oceans 125:e2019JC015587. https://doi.org/10.1029/2019JC015587

    Article  Google Scholar 

  • Biuw M, Boehme L, Guinet C, Hindell M, Costa D, Charrassin JB, Roquet F, Bailleul F, Meredith M, Thorpe S, Tremblay Y, Mcdonald B, Park YH, Rintoul SR, Bindoff N, Goebel M, Crocker D, Lovell P, Nicholson J, Monks F, Fedak MA (2007) Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. P Natl Acad Sci USA 104:13705–13710. https://doi.org/10.1073/pnas.0701121104

    Article  Google Scholar 

  • Block BA, Holbrook CM, Simmons SE, Holland KN, Ault JS, Costa DP, Mate BR, Seitz AC, Arendt MD, Payne JC (2016) Toward a national animal telemetry network for aquatic observations in the United States. Anim Biotelemetry 4(1):1–8. https://doi.org/10.1186/s40317-015-0092-1

    Article  Google Scholar 

  • Boehme L, Lovell P, Biuw M, Roquet F, Nicholson J, Thorpe SE, Meredith MP, Fedak M (2009) Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection. Ocean Sci 5(4):685–695. https://doi.org/10.5194/os-5-685-2009

    Article  Google Scholar 

  • Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78(3):363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022

    Article  Google Scholar 

  • Boyd IL, Kato A, Ropert-Coudert Y (2004) Bio-logging science: sensing beyond the boundaries. Mem Natl Inst Polar Res 58:1–14

    Google Scholar 

  • Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61(9):689–698. https://doi.org/10.1525/bio.2011.61.9.7

    Article  Google Scholar 

  • Casey JP, James MC, Williard AS (2014) Behavioral and metabolic contributions to thermoregulation in freely swimming leatherback turtles at high latitudes. J Exp Biol 217(13):2331–2337. https://doi.org/10.1242/jeb.100347

    Article  Google Scholar 

  • Castellini MA, Kooyman GL, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165(1):181–194

    Article  Google Scholar 

  • Cazau D, Bonnel J, Jouma’a J, Le Bras Y, Guinet C (2017) Measuring the marine soundscape of the Indian Ocean with southern elephant seals used as acoustic gliders of opportunity. J Atmos Ocean Tech 34(1):207–223. https://doi.org/10.1175/JTECH-D-16-0124.1

    Article  Google Scholar 

  • Charrassin JB, Hindell M, Rintoul SR, Roquet F, Sokolov S, Biuw M, Costa D, Boehme L, Lovell P, Coleman R, Timmermann R, Meijers A, Meredith M, Park YH, Bailleul F, Goebel M, Tremblay Y, Bost CA, Mcmahon CR, Field IC, Fedak MA, Guinet C (2008) Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. P Natl Acad Sci USA 105:11634–11639. https://doi.org/10.1073/pnas.0800790105

    Article  Google Scholar 

  • Choi N, Kim JH, Kokubun N, Park S, Chung H, Lee WY (2017) Group association and vocal behaviour during foraging trips in Gentoo penguins. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-07900-7

    Article  Google Scholar 

  • Cianchetti-Benedetti M, Catoni C, Kato A, Massa B, Quillfeldt P (2017) A new algorithm for the identification of dives reveals the foraging ecology of a shallow-diving seabird using accelerometer data. Mar Biol 164(4):77–87. https://doi.org/10.1007/s00227-017-3106-0

    Article  Google Scholar 

  • Cooke SJ, Brownscombe JW, Raby GD, Broell F, Hinch SG, Clark TD, Semmens JM (2016) Remote bioenergetics measurements in wild fish: opportunities and challenges. Comp Biochem Phys A 202:23–37. https://doi.org/10.1016/j.cbpa.2016.03.022

    Article  Google Scholar 

  • Cornick LA, Inglis SD, Willis K, Horning M (2006) Effects of increased swimming costs on foraging behavior and efficiency of captive Steller sea lions: evidence for behavioral plasticity in the recovery phase of dives. J Exp Mar Biol Ecol 333(2):306–314. https://doi.org/10.1016/j.jembe.2006.01.010

    Article  Google Scholar 

  • Costa DP, Huckstadt LA, Crocker DE, McDonald BI, Goebel ME, Fedak MA (2010a) Approaches to studying climatic change and its role on the habitat selection of Antarctic pinnipeds. Integr Comp Biol 50(6):1018–1030. https://doi.org/10.1093/icb/icq054

    Article  Google Scholar 

  • Costa DP, Robinson PW, Arnould JPY, Harrison AL, Simmons SE, Hassrick JL, Hoskins AJ, Kirkman SP, Oosthuizen H, Villegas-Amtmann S, Crocker DE (2010b) Accuracy of ARGOS locations of Pinnipeds at-sea estimated using fastloc GPS. PLoS ONE 5(1):e8677. https://doi.org/10.1371/journal.pone.0008677

    Article  Google Scholar 

  • Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, Guinet C (2018) Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Method Ecol Evol 9(1):64–77. https://doi.org/10.1111/2041-210X.12845

    Article  Google Scholar 

  • Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses. Science 307(5707):249–250. https://doi.org/10.1126/science.1106042h

    Article  Google Scholar 

  • Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB, Kohin S, Horning M (1999) Hunting behavior of a marine mammal beneath the Antarctic fast ice. Science 283(5404):993–996. https://doi.org/10.1126/science.283.5404.993

    Article  Google Scholar 

  • del Villar-Guerra D, Cronin M, Dabrowski T, Bartlett D (2012) Seals as collectors of oceanographic data in the coastal zone. Estuar Coast Shelf S 115:272–281. https://doi.org/10.1016/j.ecss.2012.09.010

    Article  Google Scholar 

  • Delord K, Barbraud C, Pinaud D, Letournel B, Jaugeon B, Goraguer H, Lazure P, Lormee H (2020) Movements of three alcid species breeding sympatrically in Saint Pierre and Miquelon, northwestern Atlantic Ocean. J Ornithol 161(2):359–371. https://doi.org/10.1007/s10336-019-01725-z

    Article  Google Scholar 

  • Fancy SG, Pank LF, Douglas DC, Curby CH, Garner GW (1988) Satellite telemetry: a new tool for wildlife research and management. Fish and Wildlife Service, Washington, p 172

    Google Scholar 

  • Fannjiang C, Mooney TA, Cones S, Mann D, Shorter KA, Katija K (2019) Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens. J Exp Biol 222(16):jeb207654. https://doi.org/10.1242/jeb.207654

    Article  Google Scholar 

  • Fedak M (2002) Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages. Integr Comp Biol 42(1):3–10. https://doi.org/10.1093/icb/42.1.3

    Article  Google Scholar 

  • Flaspohler GE, Caruso F, Mooney TA, Katija K, Fontes J, Afonso P, Shorter KA (2019) Quantifying the swimming gaits of veined squid (Loligo forbesii) using bio-logging tags. J Exp Biol 222(24):jeb198226

    Article  Google Scholar 

  • Fourati H, Manamanni N, Afilal L, Handrich Y (2011) Posture and body acceleration tracking by inertial and magnetic sensing: application in behavioral analysis of free-ranging animals. Biomed Signal Proces 6(1):94–104. https://doi.org/10.1016/j.bspc.2010.06.004

    Article  Google Scholar 

  • Fourati H, Manamanni N, Afilal L, Handrich Y (2013) Rigid body motions capturing by means of wearable inertial and magnetic MEMS sensors assembly: from the reconstitution of the posture toward the dead reckoning: an application in Bio-logging. In: Choudhary V, Iniewski K (eds) MEMS: fundamental technology and applications (devices, circuits, and systems), 1st edn. CRC Press, Boca Raton, pp 313–330

    Google Scholar 

  • Goldbogen JA, Calambokidis J, Friedlaender AS, Francis J, DeRuiter SL, Stimpert AK, Falcone E, Southall BL (2012) Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biol Lett 9(1):20120986–20120986. https://doi.org/10.1098/rsbl.2012.0986

    Article  Google Scholar 

  • Goldbogen JA, Cade DE, Calambokidis J, Czapanskiy MF, Fahlbusch J, Friedlaender AS, Gough WT, Kahane-Rapport SR, Savoca MS, Ponganis KV, Ponganis PJ (2019) Extreme bradycardia and tachycardia in the world’s largest animal. Proc Natl Acad Sci USA 116(50):25329–25332. https://doi.org/10.1073/pnas.1914273116

    Article  Google Scholar 

  • Goulet P, Guinet C, Swift R, Madsen PT, Johnson M (2019) A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals. Deep-Sea Res PT I 148:1–11. https://doi.org/10.1016/j.dsr.2019.04.007

    Article  Google Scholar 

  • Hamann M, Godfrey MH, Seminoff JA, Arthur K, Barata PCR, Bjorndal KA, Bolten AB, Broderick AC, Campbell LM, Carreras C, Casale P, Chaloupka M, Chan SKF, Coyne MS, Crowder LB, Diez CE, Dutton PH, Epperly SP, FitzSimmons NN, Formia A, Girondot M, Hays GC, Cheng IS, Kaska Y, Lewison R, Mortimer JA, Nichols WJ, Reina RD, Shanker K, Spotila JR, Tomás J, Wallace BP, Work TM, Zbinden J, Godley BJ (2010) Global research priorities for sea turtles: informing management and conservation in the 21st century. Endanger Species Res 11(3):245–269. https://doi.org/10.3354/esr00279

    Article  Google Scholar 

  • Harcourt R, Sequeira AMM, Zhang X, Roquet F, Komatsu K, Heupel M, McMahon C, Whoriskey F, Meekan M, Carroll G, Brodie S, Simpfendorfer C, Hindell M, Jonsen I, Costa DP, Block B, Muelbert M, Woodward B, Weise M, Aarestrup K, Biuw M, Boehme L, Bograd SJ, Cazau D, Charrassin JB, Cooke SJ, Cowley P, de Bruyn PJN, Jeanniard du Dot T, Duarte C, Eguíluz VM, Ferreira LC, Fernández-Gracia J, Goetz K, Goto Y, Guinet C, Hammill M, Hays GC, Hazen EL, Hückstädt LA, Huveneers C, Iverson S, Jaaman SA, Kittiwattanawong K, Kovacs KM, Lydersen C, Moltmann T, Naruoka M, Phillips L, Picard B, Queiroz N, Reverdin G, Sato K, Sims DW, Thorstad EB, Thums M, Treasure AM, Trites AW, Williams GD, Yonehara Y, Fedak MA (2019) Animal-borne telemetry: an integral component of the ocean observing toolkit. Front Mar Sci 6:326. https://doi.org/10.3389/fmars.2019.00326

    Article  Google Scholar 

  • Hazekamp AAH, Mayer R, Osinga N (2010) Flow simulation along a seal: the impact of an external device. Eur J Wildlife Res 56(2):131–140. https://doi.org/10.1007/s10344-009-0293-0

    Article  Google Scholar 

  • Heaslip SG, Iverson SJ, Bowen WD, James MC (2012) Jellyfish support high energy intake of Leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLoS ONE 7(3):e33259. https://doi.org/10.1371/journal.pone.0033259

    Article  Google Scholar 

  • Hernandez SM, Loyd KAT, Newton AN, Carswell BL, Abernathy KJ (2018) The use of point-of-view cameras (Kittycams) to quantify predation by colony cats (Felis catus) on wildlife. Wildlife Res 45(4):357–365. https://doi.org/10.1071/Wr17155

    Article  Google Scholar 

  • Heylen BC, Nachtsheim DA (2018) Bio-telemetry as an essential tool in movement ecology and marine conservation. In: Jungblut S, Liebich V, Bode M (eds) YOUMARES 8-oceans across boundaries learning from each other. Springer International Publishing, Cham, pp 83–107. https://doi.org/10.1007/978-3-319-93284-2_7

    Chapter  Google Scholar 

  • Hindell MA, Reisinger RR, Ropert-Coudert Y, Hückstädt LA, Trathan PN, Bornemann H, Charrassin JB, Chown SL, Costa DP, Danis B, Lea MA, Thompson D, Torres LG, van de Putte AP, Alderman R, Andrews-Goff V, Arthur B, Ballard G, Bengtson J, Bester MN, Blix AS, Boehme L, Bost CA, Boveng P, Cleeland J, Constantine R, Corney S, Crawford RJM, Dalla Rosa L, de Bruyn PJN, Delord K, Descamps S, Double M, Emmerson L, Fedak M, Friedlaender A, Gales N, Goebel ME, Goetz KT, Guinet C, Goldsworthy SD, Harcourt R, Hinke JT, Jerosch K, Kato A, Kerry KR, Kirkwood R, Kooyman GL, Kovacs KM, Lawton K, Lowther AD, Lydersen C, Lyver POB, Makhado AB, Márquez MEI, McDonald BI, McMahon CR, Muelbert M, Nachtsheim D, Nicholls KW, Nordøy ES, Olmastroni S, Phillips RA, Pistorius P, Plötz J, Pütz K, Ratcliffe N, Ryan PG, Santos M, Southwell C, Staniland I, Takahashi A, Tarroux A, Trivelpiece W, Wakefield E, Weimerskirch H, Wienecke B, Xavier JC, Wotherspoon S, Jonsen ID, Raymond B (2020) Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580(7801):87–92. https://doi.org/10.1038/s41586-020-2126-y

    Article  Google Scholar 

  • Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JD (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30(1):3–15

    Article  Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348(6240):1255642. https://doi.org/10.1126/science.1255642

    Article  Google Scholar 

  • Irvine LM, Winsor MH, Follett TM, Mate BR, Palacios DM (2020) An at-sea assessment of Argos location accuracy for three species of large whales, and the effect of deep-diving behavior on location error. Anim Biotelemetry 8(1):20. https://doi.org/10.1186/s40317-020-00207-x

    Article  Google Scholar 

  • Jang S, Balazs GH, Parker DM, Kim BY, Kim MY, Ng CKY, Kim TW (2018) Movements of green turtles (Chelonia mydas) rescued from pound nets near Jeju Island, Republic of Korea. Chelonian Conserv BI 17(2):236. https://doi.org/10.2744/CCB-1279.1

    Article  Google Scholar 

  • Januszewski J (2016) Global satellite navigation systems at high latitudes, visibility and geometry. Annu Navig 23(1):89–102. https://doi.org/10.1515/aon-2016-0006

    Article  Google Scholar 

  • Jewell OJD, Gleiss AC, Jorgensen SJ, Andrzejaczek S, Moxley JH, Beatty SJ, Wikelski M, Block BA, Chapple TK (2019) Cryptic habitat use of white sharks in kelp forest revealed by animal-borne video. Biol Lett 15(4):20190085. https://doi.org/10.1098/rsbl.2019.0085

    Article  Google Scholar 

  • Jones TT, Van Houtan KS, Bostrom BL, Ostafichuk P, Mikkelsen J, Tezcan E, Carey M, Imlach B, Seminoff JA (2013) Calculating the ecological impacts of animal-borne instruments on aquatic organisms. Method Ecol Evol 4(12):1178. https://doi.org/10.1111/2041-210X.12109

    Article  Google Scholar 

  • Kalra B, Chauhan D (2014) A comparative study of mobile wireless communication network: 1G to 5G. Int J Comput Sci Inf Tech Res 2(3):430–433

    Google Scholar 

  • Kay WP, Naumann DS, Bowen HJ, Withers SJ, Evans BJ, Wilson RP, Stringell TB, Bull JC, Hopkins PW, Börger L (2019) Minimizing the impact of biologging devices: using computational fluid dynamics for optimizing tag design and positioning. Method Ecol Evol 10(8):1222–1233. https://doi.org/10.1111/2041-210X.13216

    Article  Google Scholar 

  • Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348(6240):aaa2478. https://doi.org/10.1126/science.aaa2478

    Article  Google Scholar 

  • Keates TR, Kudela RM, Holser RR, Hückstädt LA, Simmons SE, Costa DP (2020) Chlorophyll fluorescence as measured in situ by animal-borne instruments in the northeastern Pacific Ocean. J Mar Syst 203:103265. https://doi.org/10.1016/j.jmarsys.2019.103265

    Article  Google Scholar 

  • Klimley AP, Le Boeuf BJ, Cantara KM, Richert JE, Davis SF, Van Sommeran S (2001) Radio acoustic positioning as a tool for studying site-specific behavior of the white shark and other large marine species. Mar Biol 138(2):429–446. https://doi.org/10.1007/s002270000394

    Article  Google Scholar 

  • Knudsen VO, Wilson JV, Anderson NS (1948) The attenuation of audible sound in fog and smoke. J Acoust Soc Am 20(6):849–857

    Article  Google Scholar 

  • Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12(79):391–394

    Article  Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60(1):19–32. https://doi.org/10.1146/annurev.physiol.60.1.19

    Article  Google Scholar 

  • Kooyman GL, Drabek C, Elsner R, Campbell W (1971) Diving behavior of the emperor penguin, Aptenodytes forsteri. Auk 88(4):775–795. https://doi.org/10.2307/4083837

    Article  Google Scholar 

  • Kooyman GL, Gentry RL, Urguhart DL (1976) Northern fur seal diving behavior: a new approach to its study. Science 193(4251):411–412. https://doi.org/10.1126/science.935876

    Article  Google Scholar 

  • Kooyman GL, Ponganis PJ, Castellini M, Ponganis E, Ponganis K, Thorson P, Eckert S, LeMaho Y (1992) Heart rates and swim speeds of emperor penguins diving under sea ice. J Exp Biol 165(1):161–180

    Article  Google Scholar 

  • Korpela J, Suzuki H, Matsumoto S, Mizutani Y, Samejima M, Maekawa T, Nakai J, Yoda K (2020) Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun Biolog 3(1):633. https://doi.org/10.1038/s42003-020-01356-8

    Article  Google Scholar 

  • Lander ME, Lindstrom T, Rutishauser M, Franzheim A, Holland M (2015) Development and field testing a satellite-linked fluorometer for marine vertebrates. Anim Biotelemetry 3(1):1–11. https://doi.org/10.1186/s40317-015-0070-7

    Article  Google Scholar 

  • Lawson G, Hückstädt L, Lavery A, Jaffre F, Wiebe P, Fincke J, Crocker D, Costa D (2015) Development of an animal-borne “sonar tag” for quantifying prey availability: test deployments on northern elephant seals. Anim Biotelemetry 3:22. https://doi.org/10.1186/s40317-015-0054-7

    Article  Google Scholar 

  • Lévy M, Franks PJS, Smith KS (2018) The role of submesoscale currents in structuring marine ecosystems. Nat Commun 9(1):4758. https://doi.org/10.1038/s41467-018-07059-3

    Article  Google Scholar 

  • Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Method Ecol Evol 3(3):603–612. https://doi.org/10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  • Lowther AD, Lydersen C, Kovacs KM (2016) The seasonal evolution of shelf water masses around Bouvetøya, a sub-Antarctic island in the mid-Atlantic sector of the Southern Ocean, determined from an instrumented southern elephant seal. Polar Res 35(1):28278. https://doi.org/10.3402/polar.v35.28278

    Article  Google Scholar 

  • Lyamin OI, Mukhametov LM, Siegel JM (2017) Sleep in the northern fur seal. Curr Opin Neurol 44:144–151. https://doi.org/10.1016/j.conb.2017.04.009

    Article  Google Scholar 

  • Mallett HKW, Boehme L, Fedak M, Heywood KJ, Stevens DP, Roquet F (2018) Variation in the distribution and properties of circumpolar deep water in the Eastern Amundsen Sea, on seasonal timescales, using Seal-Borne tags. Geophys Res Lett 45(10):4982–4990. https://doi.org/10.1029/2018gl077430

    Article  Google Scholar 

  • March D, Boehme L, Tintoré J, Vélez-Belchi PJ, Godley BJ (2020) Towards the integration of animal-borne instruments into global ocean observing systems. Global Change Biol 26(2):586–596. https://doi.org/10.1111/gcb.14902

    Article  Google Scholar 

  • Marshall GJ (1998) CRITTERCAM: An animal-borne imaging and data logging system. Mar Technol Soc J 32(1):11–17

    Google Scholar 

  • Marshall GJ, Bakhtiari M, Shepard M, Tweedy I, Rasch D, Abernathy K, Joliff B, Carrier JC, Heithaus MR (2007) An advanced solid-state animal-borne video and environmental data-logging device (“Crittercam”) for marine research. Mar Technol Soc J 41(2):31–38. https://doi.org/10.4031/002533207787442240

    Article  Google Scholar 

  • Mascetti GG (2016) Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives. Nat Sci Sleep 8:221–238. https://doi.org/10.2147/NSS.S71970

    Article  Google Scholar 

  • Mate BR (2012) Implementation of acoustic dosimeters with recoverable month-long GPS/TDR tags to interpret controlled-exposure experiments for large whales. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York. https://doi.org/10.1007/978-1-4419-7311-5_45

    Chapter  Google Scholar 

  • McGillicuddy DJ, Robinson AR (1997) Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res PT I 44(8):1427–1450. https://doi.org/10.1016/S0967-0637(97)00024-1

    Article  Google Scholar 

  • McKeown A, Westcott DA (2012) Assessing the accuracy of small satellite transmitters on free-living flying-foxes. Austral Ecol 37(3):295–301

    Article  Google Scholar 

  • McMahon CR, Autret E, Houghton JDR, Lovell P, Myers AE, Hays GC (2005) Animal-borne sensors successfully capture the real-time thermal properties of ocean basins. Limnol Oceanogr-Meth 3(9):392–398. https://doi.org/10.4319/lom.2005.3.392

    Article  Google Scholar 

  • Miyamoto Y, Sakai T, Furusawa M, Naito Y (2004) Development of high-frequency micro echo sounder. Fish Sci 70(3):381–388. https://doi.org/10.1111/j.1444-2906.2004.00817.x

    Article  Google Scholar 

  • Moll RJ, Millspaugh JJ, Beringer J, Sartwell J, He Z (2007) A new ‘view’of ecology and conservation through animal-borne video systems. Trends Ecol Evol 22(12):660–668. https://doi.org/10.1016/j.tree.2007.09.007

    Article  Google Scholar 

  • Mooney TA, Katija K, Shorter KA, Hurst T, Fontes J, Afonso P (2015) ITAG: an eco-sensor for fine-scale behavioral measurements of soft-bodied marine invertebrates. Anim Biotelemetry 3(1):31. https://doi.org/10.1186/s40317-015-0076-1

    Article  Google Scholar 

  • Naito Y (2004) New steps in bio-logging science. Mem Natl Inst Polar Res 58:50–57

    Google Scholar 

  • Naito Y, Le Boeuf BJ, Asaga T, Huntley AC (1989) Long-term records of an adult female northern elephant seal. Antarct Rec 33:1–9

  • Naito Y, Sakamoto W, Uchida I, Kureha K, Ebisawa T (1990) Estimation of migration route of the loggerhead turtle caretta-caretta around the nesting ground. Nippon Suisan Gakk 56(2):255–262

    Article  Google Scholar 

  • Nassar JM, Khan SM, Velling SJ, Diaz-Gaxiola A, Shaikh SF, Geraldi NR, Sevilla GAT, Duarte CM, Hussain MM (2018) Compliant lightweight non-invasive standalone “Marine Skin” tagging system. NPJ Flex Electron 2(1):1–9. https://doi.org/10.1038/s41528-018-0025-1

    Article  Google Scholar 

  • Newman L, Heil P, Trebilco R, Katsumata K, Constable A, van Wijk E, Assmann K, Beja J, Bricher P, Coleman R, Costa D, Diggs S, Farneti R, Fawcett S, Gille ST, Hendry KR, Henley S, Hofmann E, Maksym T, Mazloff M, Meijers A, Meredith MM, Moreau S, Ozsoy B, Robertson R, Schloss I, Schofield O, Shi J, Sikes E, Smith IJ, Swart S, Wahlin A, Williams G, Williams MJM, Herraiz-Borreguero L, Kern S, Lieser J, Massom RA, Melbourne-Thomas J, Miloslavich P, Spreen G (2019) Delivering sustained, coordinated, and integrated observations of the southern ocean for global impact. Front Mar Sci 6:433. https://doi.org/10.3389/fmars.2019.00433

    Article  Google Scholar 

  • Nicholls DG, Robertson CJR, Murray MD (2007) Measuring accuracy and precision for CLS: Argos satellite telemetry locations. Notornis 54(3):137–157

    Google Scholar 

  • Nielsen JK, Rose CS, Loher T, Drobny P, Seitz AC, Courtney MB, Gauvin J (2018) Characterizing activity and assessing bycatch survival of Pacific halibut with accelerometer Pop-up Satellite Archival Tags. Anim Biotelemetry 6(1):10. https://doi.org/10.1186/s40317-018-0154-2

    Article  Google Scholar 

  • Nuijten RJM, Gerrits T, Shamoun-Baranes J, Nolet BA (2020) Less is more: on-board lossy compression of accelerometer data increases biologging capacity. J Anim Ecol 89(1):237–247. https://doi.org/10.1111/1365-2656.13164

    Article  Google Scholar 

  • Ohshima KI, Fukamachi Y, Williams GD, Nihashi S, Roquet F, Kitade Y, Tamura T, Hirano D, Herraiz-Borreguero L, Field I, Hindell M, Aoki S, Wakatsuchi M (2013) Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat Geosci 6:235–240. https://doi.org/10.1038/ngeo1738

    Article  Google Scholar 

  • Parrish FA, Craig MP, Ragen TJ, Marshall GJ, Buhleier BM (2000) Identifying diurnal foraging habitat of endangered Hawaiian monk seals using a seal-mounted video camera. Mar Mammal Sci 16(2):392–412. https://doi.org/10.1111/j.1748-7692.2000.tb00932.x

    Article  Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol-Prog Ser 266:265–272. https://doi.org/10.3354/meps266265

    Article  Google Scholar 

  • Portugal SJ, White CR, Börger L (2018) Miniaturization of biologgers is not alleviating the 5% rule. Method Ecol Evol 9(7):1662–1666. https://doi.org/10.1111/2041-210x.13013

    Article  Google Scholar 

  • Powell SB, Garnett R, Marshall J, Rizk C, Gruev V (2018) Bioinspired polarization vision enables underwater geolocalization. Sci Adv 4(4):eaao6841. https://doi.org/10.1126/sciadv.aao6841

    Article  Google Scholar 

  • Rattenborg NC, Lima SL, Amlaner CJ (1999) Facultative control of avian unihemispheric sleep under the risk of predation. Behav Brain Res 105(2):163–172. https://doi.org/10.1016/s0166-4328(99)00070-4

    Article  Google Scholar 

  • Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell’Omo G, Lipp HP, Wikelski M, Vyssotski AL (2016) Evidence that birds sleep in mid-flight. Nat Commun 7:12468. https://doi.org/10.1038/ncomms12468

    Article  Google Scholar 

  • Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, Fowler MA, Goetsch C, Goetz KT, Hassrick JL, Hückstädt LA (2012) Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS ONE 7(5):e36728. https://doi.org/10.1371/journal.pone.0036728

    Article  Google Scholar 

  • Rodgers AR, Rempel RS, Abraham KF (1996) A GPS-based telemetry system. Wildl Soc Bull 24(3):559–566

    Google Scholar 

  • Ropert-Coudert Y, Rory PW (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3(8):437–444. https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2

    Article  Google Scholar 

  • Roquet F, Charrassin JB, Marchand S, Boehme L, Fedak M, Reverdin G, Guinet C (2011) Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers. J Atmos Ocean Tech 28(6):787–801. https://doi.org/10.1175/2010jtecho801.1

    Article  Google Scholar 

  • Roquet F, Wunsch C, Forget G, Heimbach P, Guinet C, Reverdin G, Charrassin JB, Bailleul F, Costa DP, Huckstadt LA, Goetz KT, Kovacs KM, Lydersen C, Biuw M, Nøst OA, Bornemann H, Ploetz J, Bester MN, McIntyre T, Muelbert MC, Hindell MA, McMahon CR, Williams G, Harcourt R, Field IC, Chafik L, Nicholls KW, Boehme L, Fedak MA (2013) Estimates of the Southern Ocean general circulation improved by animal-borne instruments: seals sample the Southern Ocean. Geophys Res Lett 40(23):6176–6180. https://doi.org/10.1002/2013GL058304

    Article  Google Scholar 

  • Roquet F, Boehme L, Block B, Charrassin JB, Costa D, Guinet C, Harcourt RG, Hindell MA, Hückstädt LA, McMahon CR, Woodward B, Fedak MA (2017) Ocean observations using tagged animals. Oceanography 30(2):139

    Article  Google Scholar 

  • Rutz C, Hays GC (2009) New frontiers in biologging science. Biol Lett 5:289–292. https://doi.org/10.1098/rsbl.2009.0089

    Article  Google Scholar 

  • Rutz C, Troscianko J (2013) Programmable, miniature video-loggers for deployment on wild birds and other wildlife. Method Ecol Evol 4(2):114–122. https://doi.org/10.1111/2041-210x.12003

    Article  Google Scholar 

  • Semmens JM, Kock AA, Watanabe YY, Shepard CM, Berkenpas E, Stehfest KM, Barnett A, Payne NL (2019) Preparing to launch: biologging reveals the dynamics of white shark breaching behaviour. Mar Biol 166(7):95. https://doi.org/10.1007/s00227-019-3542-0

    Article  Google Scholar 

  • Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. P Natl Acad Sci USA 103(34):12799–12802. https://doi.org/10.1073/pnas.0603715103

    Article  Google Scholar 

  • Shaikh SF, Mazo-Mantilla HF, Qaiser N, Khan SM, Nassar JM, Geraldi NR, Duarte CM, Hussain MM (2019) Noninvasive featherlight wearable compliant “marine skin”: standalone multisensory system for deep-sea environmental monitoring. Small 15(10):1804385. https://doi.org/10.1002/smll.201804385

    Article  Google Scholar 

  • Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Liebsch N, Albareda DA, Halsey LG, Gleiss A, Morgan DT, Myers AE, Newman C, Macdonald DW (2008) Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res 10:47–60. https://doi.org/10.3354/esr00084

    Article  Google Scholar 

  • Shiomi K, Sato K, Mitamura H, Arai N, Naito Y, Ponganis PJ (2008) Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquat Biol 3:265–270. https://doi.org/10.3354/ab00087

    Article  Google Scholar 

  • Siegelman L, O’toole M, Flexas M, Rivière P, Klein P (2019) Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-42117-w

    Article  Google Scholar 

  • Silvano A, Rintoul SR, Peña-Molino B, Hobbs WR, van Wijk E, Aoki S, Tamura T, Williams GD (2018) Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci Adv 4:eaap9467. https://doi.org/10.1126/sciadv.aap9467

    Article  Google Scholar 

  • Staniland IJ, Ratcliffe N, Trathan PN, Forcada J (2018) Long term movements and activity patterns of an Antarctic marine apex predator: the leopard seal. PLoS ONE 13:e0197767. https://doi.org/10.1371/journal.pone.0197767

    Article  Google Scholar 

  • Stehfest KM, Carter CG, McAllister JD, Ross JD, Semmens JM (2017) Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-04806-2

    Article  Google Scholar 

  • Teo SLH, Boustany A, Blackwell S, Walli A, Weng KC, Block BA (2004) Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar Ecol-Prog Ser 283:81–98. https://doi.org/10.3354/meps283081

    Article  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos T R Soc B 365(1550):2163–2176. https://doi.org/10.1098/rstb.2010.0090

    Article  Google Scholar 

  • Treasure AM, Roquet F, Ansorge IJ, Bester MN, Boehme L, Bornemann H, Charrassin JB, Chevallier D, Costa DP, Fedak MA, Guinet C, Hammill MO, Harcourt RG, Hindell MA, Kovacs KM, Lea MA, Lovell P, Lowther AD, Lydersen C, McIntyre T, McMahon CR, Muelbert MMC, Nicholls K, Picard B, Reverdin G, Trites AW, Williams GD, Nico De Bruyn PJ (2017) Marine mammals exploring the oceans pole to pole: a review of the MEOP Consortium. Oceanography 30(2):132–138. https://doi.org/10.5670/oceanog.2017.234

    Article  Google Scholar 

  • Tremblay Y, Thiebault A, Mullers R, Pistorius P (2014) Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS ONE 9(2):e88424. https://doi.org/10.1371/journal.pone.0088424

    Article  Google Scholar 

  • Van der Hoop JM, Fahlman A, Hurst T, Rocho-Levine J, Shorter KA, Petrov V, Moore MJ (2014) Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J Exp Biol 217(23):4229–4236. https://doi.org/10.1242/jeb.108225

    Article  Google Scholar 

  • Virens J, Cree A (2018) Further miniaturisation of the Thermochron iButton to create a thermal bio-logger weighing 0.3 g. J Exp Biol 221(11):jeb176354. https://doi.org/10.1242/jeb.176354

    Article  Google Scholar 

  • Viviant M, Trites AW, Rosen DAS, Monestiez P, Guinet C (2010) Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol 33(5):713–719. https://doi.org/10.1007/s00300-009-0750-y

    Article  Google Scholar 

  • Voegeli FA, Smale MJ, Webber DM, Andrade Y, O’Dor RK (2001) Ultrasonic telemetry, tracking and automated monitoring technologyfor sharks. Environ Biol Fish 60(1/3):267–282. https://doi.org/10.1023/a:1007682304720

    Article  Google Scholar 

  • Ware C, Trites AW, Rosen DA, Potvin J (2016) Averaged propulsive body acceleration (APBA) can be calculated from biologging tags that incorporate gyroscopes and accelerometers to estimate swimming speed, hydrodynamic drag and energy expenditure for Steller sea lions. PLoS ONE 11(6):e0157326. https://doi.org/10.1371/journal.pone.0157326

    Article  Google Scholar 

  • Watanabe Y, Takahashi A (2013) Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad Sci USA 110(6):2199–2204. https://doi.org/10.1073/pnas.1216244110

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992

    Article  Google Scholar 

  • Wenz GM (1962) Acoustic ambient noise in the ocean: spectra and sources. J Acoust Soc Am 34(12):1936–1956

    Article  Google Scholar 

  • Whitford M, Klimley AP (2019) An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. Anim Biotelemetry 7(1):1–24. https://doi.org/10.1186/s40317-019-0189-z

    Article  Google Scholar 

  • Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V (2015) The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecol Lett 96(7):1741–1753. https://doi.org/10.1890/14-1401.1

    Article  Google Scholar 

  • Wilson RP, McMahon CR (2006) Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ 4(3):147–154. https://doi.org/10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2

    Article  Google Scholar 

  • Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y, Kurita M, Le Maho Y (2001) A new technique for monitoring the behaviour of free-ranging Adélie penguins. J Exp Biol 204(4):685–690

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Polar Research institute under Grant PE20110 and PN19130; and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under Grant 2019M1A5A1102275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Young Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H., Lee, J. & Lee, W.Y. A Review: Marine Bio-logging of Animal Behaviour and Ocean Environments. Ocean Sci. J. 56, 117–131 (2021). https://doi.org/10.1007/s12601-021-00015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-021-00015-1

Keywords

Navigation