Skip to main content

Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia

Abstract

Seagrass meadows provide critical ecosystem services for coastal areas, e.g., as nursery habitats for various fish species, help with water filtration of suspended sediment, and provide food for dugongs (Dugong dugon). Their role as “blue carbon” and their capacity to mitigate climate change, by means of Natural mechanism of Carbon Dioxide Removal (NCDR) from the atmosphere, has recently gained increased attention. However, available scientific methods such as guidelines and manuals to measure carbon stock and sequestration still rely heavily on field sampling activities and laboratory analyses. Despite their accuracy, neither of these methods are applicable for large-scale carbon inventories nor are they practical in areas with limited carbon-related data and laboratory resources. Thus, it is necessary to determine whether any of the seagrass-related variables (e.g., coverage, density and biomass) may be treated as a proxy that are both robust and practical to assess the capacity of seagrass to store and sequester carbon. We developed formulas, assessed their robustness, and used both the formulas and the proxy to estimate carbon stock and the sequestration potential of the seagrasses. Furthermore, this study aims to elucidate the carbon stock and sequestration potential capacity of the seagrass ecosystems in Indonesia. We used the data of seagrass- and carbon-related variables obtained from eleven study sites and developed several candidate formulas using the Robust Linear Mixed Models (rL MMs). We found that the best formulas are comprised of multiple seagrass-related variables that consistently include biomass and coverage. This suggests that a combination of biomass and coverage is the best proxy to estimate carbon stock; however, a single proxy of seagrass coverage is recommended for practical seagrass monitoring purposes by the local government. Estimations of carbon stock and sequestration subsequently follow the formulas in the present study. Here we estimated, using a single proxy of seagrass coverage, that the above- and below-ground carbon stock, and carbon sequestration capacity of seagrass ecosystems in Indonesia reached 80–314 ktC, 196–696 ktC, and 1.6–7.4 MtC/year, respectively.

This is a preview of subscription content, access via your institution.

References

  • ADB (2014) State of the coral triangle: Indonesia. Asian Development Bank, Mandaluyong, 85 p

    Google Scholar 

  • Alongi DM, Murdiyarso D, Fourqurean JW, Kauffman JB, Hutahaean A, Crooks S, Lovelock CE, Howard J, Herr D, Fortes M, Pidgeon E, Wagey T (2016) Indonesia’s blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl Ecol Manag 24(1):3–13. doi:https://doi.org/10.1007/s11273-015-9446-y

    Google Scholar 

  • National Geospatial Information Agency (2012) Geospatial information of mangroves in Indonesia. Bogor: Center for mapping and thematic information. National Geospatial Information Agency of Indonesia, Jakarta, 335 p

    Google Scholar 

  • Bala G (2014) Can planting new trees help to reduce global warming? Curr Sci India 106(12):1623–1624

    Google Scholar 

  • Belshe EF, Hoeijmakers D, Herran N, Mtolera M, Teichberg M (2018) Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences 15: 4609–4626. doi:https://doi.org/10.5194/bg-15-4609-2018

    Google Scholar 

  • Calcagno V, de Mazancourt C (2010) Glmulti: An R package for easy automated model selection with (Generalized) Linear Mod e ls. Curr Sci India 34(12):1–29. doi:https://doi.org/10.18637/jss.v034.i12

    Google Scholar 

  • CRMIS (2016) COREMAP-CTI data center. Coral Reef Management Information System. http://coremap.oseanografi.lipi.go.id/crmis Accessed 20 Sep 2018

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Naeem S, Limburg K, Paruelo J, O’Neill RV, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. doi:https://doi.org/10.1038/387253a0

    Google Scholar 

  • Cullen-Unsworth LC, Unsworth RKF (2013) Seagrass meadows, ecosystem services, and sustainability. Environ Sci Pol Sust Dev 55(3):14–28. doi:https://doi.org/10.1080/00139157.2013.785864

    Google Scholar 

  • Duarte C, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41(8):1758–1766. doi:https://doi.org/10.4319/10.1996.41.8.1758

    Google Scholar 

  • Duarte C, Middelburg J, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8. doi:https://doi.org/10.5194/bg-2-1-2005

    Google Scholar 

  • Duarte CM, Dennison WC, Orth RJW, Caruthers TJB (2008) The charisma of coastal ecosystems: Addressing the imbalance. Estuar Coast 31(2):233–238. doi:https://doi.org/10.1007/s12237-008-9038-7

    Google Scholar 

  • Duarte C, Losada IJ, Hendriks IE, Mazarrasa I, Marba N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3: 961–968. doi:https://doi.org/10.1038/NCLIMATE1970

    Google Scholar 

  • Fang Y (2011) Asymptotic equivalence between cross-validations and Akaike information criteria in mixed-effects models. J Dat Sci 9(1):15–21

    Google Scholar 

  • Fauzan MA, Kumara ISW, Yogyantoro RN, Suwardana SW, Fadhilah N, Nurmalasari I, Apriyani S, Wicaksono P (2017) Assessing the capability of sentinel-2A data for mapping seagrass percent cover in Jerowaru, East Lombok. Indonesia J Geogr 49(2):195–203. doi:https://doi.org/10.22146/ijg.28407

    Google Scholar 

  • Feng G, Luo H, Zhang Y, Gou L, Yao Y, Lin Y, Zhang W (2016) Relationship between plant canopy characteristics and ph o t o s y n t h e t i c productivity in diverse cultivars of cotton (Gossypium hirsutum L.). Crop J 4: 499–508. doi:https://doi.org/10.1016/j.cj.2016.05.012

    Google Scholar 

  • Finn PG, Udy NS, Baltais SJ, Price K, Coles L (2010) Assessing the quality of seagrass data collected by community volunteers in Moreton Bay Marine Park, Australia. Environ Conserv 37(1):83–89. doi:https://doi.org/10.1017/S0376892910000251

    Google Scholar 

  • Fortes MD, Ooi JLS, Tan YM, Prathep A, Bujang JS, Yaakub SM (2018) Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Bot Mar 61: 269–288. doi:https://doi.org/10.1515/bot-2018-0008

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5(7):505–509. doi:https://doi.org/10.1038/ngeo1477

    Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20: 154–159. doi:https://doi.org/10.1111/j.1466-8238.2010.00584.x

    Google Scholar 

  • Green EP, Short FT (2003) World Atlas of Seagrasses. UNEP World Conservation Monitoring Center, Berkeley, 336 p

    Google Scholar 

  • Hafizt M, Iswari MY, Prayudha B (2017) Assessment of landsat-8 classification method for benthic habitat mapping in Padaido Islands, Papua. OLDI 2(1):1–13

    Google Scholar 

  • Harrould-Kolieb E, Huelsenbeck M, Selz V (2010) Ocean acidification, the untold stories. Oceana, Washington, 21 p

    Google Scholar 

  • Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J and Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346. doi:https://doi.org/10.5194/bg-11-333-2014

    Google Scholar 

  • Hernawan U, Sjafrie NDM, Supriyadi I, Suyarso, Iswari M, Anggraini K, Rahmat R (2017) Status of the seagrass meadows in Indonesia 2017. Indonesian Institute of Sciences, 23 p

    Google Scholar 

  • Howard JL, Creed JC, Aguiar MVP, Fourqurean JW (2017) CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol Oceanogr 63: 160–172. doi:https://doi.org/10.1002/lno.10621

    Google Scholar 

  • Irving AD, Tanner JE, Collings GJ (2014) Rehabilitating seagrass by facilitating recruitment: Improving chances for success. Restor Ecol 22(2):134–141. doi:https://doi.org/10.1111/rec.12036

    Google Scholar 

  • Kementerian Lingkungan Hidup dan Kehutanan (2013) Recalc ulation of the land cover in Indonesia in 2012. Ministry of Forestry of Indonesia, Jakarta, 85 p

    Google Scholar 

  • Ken A, DeWayne D, Teri P (2014) Model selection for ecologists: The worldviews of AIC and BIC. Ecology 95(3):631–636. doi:https://doi.org/10.1890/13-1452.1

    Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OM, Ooi JLS, Orth RJ, Rivers DO, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin JJ (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62(1):56–65. doi:https://doi.org/10.1525/bio.2012.62.1.10

    Google Scholar 

  • Kiswara W (1994) A review: Seagrass ecosystem studies in Indonesian waters. In: Wilkinson CR, Sudara S, Chou LM (eds) Proceeding on the ASEAN-Australia Symposium on Living Coastal Resources. Chulalongkorn University, Bangkok, pp 259–282

    Google Scholar 

  • Kiswara W, Kumoro E, Kawaroe M, Rahadian N (2010) Transplanting Enhalus acoroides (L.F) royle with different length rhizome on the muddy substrate and high water dynamic at Banten Bay, Indonesia. Mar Res Indonesia 35(2):1–7. doi:https://doi.org/10.14203/mri.v35i2.472

    Google Scholar 

  • Koller M (2013) Robust estimation of linear mixed models. Ph.D. Thesis, ETH Zurich, 111 p

    Google Scholar 

  • Koller M (2016) Robustlmm: Robust linear mixed effects models. http://CRAN.R-project.org/package=robustlmm Accessed 20 Sep 2018

    Google Scholar 

  • Kuo J (2007) New monoecious seagrass of Halophila sulawesii (Hydrocharitaceae) from Indonesia. Aquat Bot 87: 171–175. doi:https://doi.org/10.1016/j.aquabot.2007.04.006

    Google Scholar 

  • Kuriandewa TE, Kiswara W, Hutomo M, Soemodihardjo S (2003) The seagrasses of Indonesia. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Barkeley, pp 172–182

    Google Scholar 

  • Lavery PS, Mateo MA, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PloS One 8:e73748. doi:https://doi.org/10.1371/journal.pone.0073748

    Google Scholar 

  • Mashoreng S, Selamat, MB, Amri K, La Nafie YA (2018) Hubungan antara Persen Penutupan dan Simpanan Karbon Lamun. J Akuatika Indonesia 3(1):74–83. doi:https://doi.org/10.24198/jaki.v3i1.23437

    Google Scholar 

  • Mateo MA, Cebrian J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystem. In: Larkum AD, Orth RJ, Duarte C (eds) Seagrasses: Biology, ecology, and conservation. Springer, Amsterdam, pp 159–192

    Google Scholar 

  • Molnar P, Cronin TW (2015) Growth of the maritime continent and its possible contribution to recurring Ice Ages. Paleoceanography 30: 196–225. doi:https://doi.org/10.1002/2014PA002752

    Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82(2–3): 284–257. doi:https://doi.org/10.1016/S0034-4257(02)00041-X

    Google Scholar 

  • Ott JA (1990) Biomass. In: {ieUNESCO} (ed) Monograph on oceanographic methodology: Seagrass research methods. UNESCO, Paris, 210 p

    Google Scholar 

  • Phang VXH, Chou LM, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitat mosaic of Mangrove Forest, seagrass meadow, mudflat and sandbar. Earth Surf Proc Land 40: 1387–1400. doi:https://doi.org/10.1002/esp.3745

    Google Scholar 

  • RCO (2018) National data center for coastal ecosystem. Research Center for Oceanography. http://pusdata.oseanografi.lipi.go.id/ Accessed 20 Sep 2018.

    Google Scholar 

  • Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI, Samper-Villarreal J, Phinn SR (2014) Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote Sens Environ 150: 172–187. doi:https://doi.org/10.1016/j.rse.2014.05.001

    Google Scholar 

  • Short FT, Duarte CM (2001) Methods for the measurement of seagrass growth and production. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 155–182

    Google Scholar 

  • Sjafrie NDM, Hernawan UE, Rahmawati S, Prayuda B, Supriyadi IH, Suyarso S, Iswari MY, Rahmat R, Anggraini K (2018) Status of the seagrass meadows in Indonesia 2018. Indonesian Institute of Sciences. https://marxiv.org/juk4h/ Accessed 20 Sep 2018

    Google Scholar 

  • Stankovic M, Tantipisanuh N, Rattanachot E, Prathep A (2018a) Model-based approach for estimating biomass and organic carbon in tropical seagrass ecosystems. Mar Ecol-Prog Ser 596: 61–70. doi:https://doi.org/10.3354/meps12597

    Google Scholar 

  • Stankovic M, Tantipisanuh N, Prathep A (2018b) Carbon storage in seagrass ecosystems along the Andaman coast of Thailand. Bot Mar 61: 429–440. doi:https://doi.org/10.1515/bot-2017-0101

    Google Scholar 

  • Sunquist E, Burruss R, Faulkner S, Gleason R, Harden J, Kharaka Y, Tieszen LL, Waldrop M (2008) Carbon sequestration to mitigate climate change. United States Geological Survey. http://www.usgs.gov/ Accessed 20 Sep 2018

    Google Scholar 

  • Supriyadi IH (2012) Carbon stock and balance of the seagrass communities in Baranglompo island in Makassar. M.D. Thesis, Bogor Agricultural University Postgraduate School, 108 p

    Google Scholar 

  • Tuntiprapas P, Shimada S, Pongparadon S, Prathep A (2015) Is Halophila major (Zoll.) Miquel a big H. ovalis (R. Brown) J. D. Hooker? An evaluation based on age, morphology, and ITS sequence. ScienceAsia 41: 79–86. doi:https://doi.org/10.2306/scienceasia1513-1874.2015.41.079

    Google Scholar 

  • Valladares F, Hernández L G, Dobarro I, García-Pérez C, Sanz R, Pugnaire FI (2003) The ratio of leaf to total photosynthetic area influences shade survival and plastic response to light of green-stemmed leguminous shrub seedlings. Ann Bot-London 91(5):577–584. doi:https://doi.org/10.1093/aob/mcg059

    Google Scholar 

  • Wabnitz CC, Andréfouët S, Torres-Pulliza D, Müller-Karger FE, Kramer PA (2008) Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sens Environ 112(8):3455–3467. doi:https://doi.org/10.1016/j.rse.2008.01.020

    Google Scholar 

  • Wahyudi AJ, Afdal A, Adi NS (2018a) Summary for policy maker: The potentials of carbon stock and sequestration of Indonesia’s mangrove and seagrass ecosystem. Indonesian Institute of Sciences. http://oseanografi.lipi.go.id/hasilpenelitian/lihatpdf/37 Accessed 20 Sep 2018

    Google Scholar 

  • Wahyudi AJ, Abimanyu H, Prayudha B (2017) Carbon sequestration index as variable for climate change mitigation In: Wahyudi AJ, Syukri AF, Afdal A, Abimanyu H, Dharmawan IWE, Irawan A, Prayudha B, Yuniarti PI, Yuliana CI (eds) Sequestering carbon: Ecosystem service for climate change mitigation. Gadjah Mada University Press, Yogyakarta, pp 119–127

    Google Scholar 

  • Wahyudi AJ, Afdal A, Prayudha B, Dharmawan IWE, Irawan A, Abimanyu H, Meirinawati H, Surinati D, Syukri AF, Yuliana CI, Yuniati PI (2018b) Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island. IOP C Ser Earth Env 118: 342–346. doi:https://doi.org/10.1088/1755-1315/118/1/012050

    Google Scholar 

  • Wicaksono P, Lazuardi W (2018) Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int J Remote Sens 39(17):5739–5765. doi:https://doi.org/10.1080/01431161.2018.1506951

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Indonesian Institute of Sciences (LIPI) Priority Research funding via Coral Reef Management and Rehabilitation Program - Coral Triangle Initiative (COREMAP-CTI) in the fiscal year (FY) of 2018. Primary data was provided by the Research Center for Oceanography (LIPI), the Research Center for Deep Sea (LIPI) and the Marine Research Center (KKP). Field samplings and data collection were conducted using the funding scheme of Riset Kompetensi Inti RCO LIPI DIPA FY 2008, 2013, 2014, Agenda Research COREMAP-CTI FY 2015–2016, Riset Unggulan LIPI via DIPA of Research Center for Ge o technology (LIPI) FY 2016–2017, LIPI’s Priority Research via CO RE MAP-CTI FY 2017–2018, and DIPA Marine Research Center of KKP FY 2013–2016. Seagrass monitoring data (seagrass-related variables) were collected during COREMAP-CTI (2015–2018). Author AJW designed and led the study, developed the concept of the manuscript, and wrote the first draft of the document. Authors SR, AI, HH, and AR performed the data and statistical analysis, and also wrote some part of methods and results. BY, MH, MYI provided remote sensing information, generated maps, and provided seagrass area data. Authors AJW, SR, AA, UEH, HH, and NSA managed the analyses and synthesis of the study. Other authors provided supporting data. All authors managed the literature searches, read and approved the final manuscript. This paper is also a contribution to the LIPI-JSPS joint research project 2019-2022 and INSINAS 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A’an J. Wahyudi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wahyudi, A.J., Rahmawati, S., Irawan, A. et al. Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia. Ocean Sci. J. 55, 85–97 (2020). https://doi.org/10.1007/s12601-020-0003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-020-0003-0

Keywords

  • carbon cycle
  • carbon stock proxy
  • ecosystem services
  • GHG reduction
  • seagrass monitoring