Skip to main content

A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry

Abstract

Biochemical composition of phytoplankton is a key indicator of the physiological and nutritional status of phytoplankton. A balanced biochemical pattern represents a healthy and productive metabolism in the autotrophic levels which can facilitate proper functioning of higher level organisms. The estimation of biochemical compositions was initiated in the early 1970’s. However, there has been a significant set of modifications in the extraction method and improvements in the sampling and analysis techniques since then. Similarly, the extent of biochemical measurements from various aquatic ecosystems around the globe has also increased. Recently, biochemical patterns are being used as a tool to track the changes in the physiological status of phytoplankton as a response to climate change. Such investigations are also forming part of research works on marine food webs and the nutritional status of ecosystems. This article is a brief review of research works carried out so far in an attempt to understand the biochemical compositions of phytoplankton in the global oceans and the implications with regard to changing environmental conditions.

This is a preview of subscription content, access via your institution.

References

  • Agawin NS, Duarte CM, Agustí S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45(3):591–600

    Google Scholar 

  • Ahn SH, Whitledge TE, Stockwell DA, Lee JH, Lee HW, Lee SH (2019) The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013. Polar Biol. doi:10.1007/S00300-018-2408-0 (in press)

    Google Scholar 

  • Alderkamp AC, Buma AGJ, van Rijssel M (2007) The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry 83:99–118

    Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Google Scholar 

  • Benemann JR, Tillett DM, Suen Y, Hubbard J, Tornabene TG (1986) Chemical profiles of microalgae with emphasis on lipids. Final Report to the Solar Energy Research Institute, National Renewable Energy Laboratory (NREL), Golden, 103 p

    Google Scholar 

  • Bhavya PS, Kumar S, Gupta GVM, Sudharma KV, Sudheesh V, Dhanya KR (2016) Carbon isotopic composition of suspended particulate matter and dissolved inorganic carbon in the Cochin estuary during post-monsoon. Curr Sci India 110(8):1539–1543

    Google Scholar 

  • Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42(3):506–518

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Google Scholar 

  • Bradford JM (1976) Partial revision of the Acartia subgenus Acartiura (Copepoda: Calanoida: Acartiidae). New Zeal J Mar Fresh 10(1):159–202

    Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145(1):79–99

    Google Scholar 

  • Chan JCC, Cheung PCK, Ang PO (1997) Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag. J Agr Food Chem 45(8):3056–3059

    Google Scholar 

  • Choi JK, Noh JH, Orlova T, Park MO, Lee SH, Park YJ, Son S, Stonik I, Choi DH (2016) Phytoplankton and primary production In: Chang KI, Zhang CI, Park C, Kang DJ, Ju SJ, Lee SH, Wimbush M (eds) Oceanography of the East Sea (Japan Sea). Springer, Switzerland, pp 217–245

    Google Scholar 

  • Chu WL, Phanga SM, Goh SH (1996) Environmental effects on growth and biochemical composition of Nitschia inconspicua Grunow. J Appl Phycol 8:389–396

    Google Scholar 

  • Danovaro R, Fabiano M (1997) Seasonal changes in quality and quantity of food available for benthic suspension-feeders in the Golfo Marconi (North-western Mediterranean). Estuar Coast Shelf S 44:723–736

    Google Scholar 

  • Danovaro R, Della Croce N, Fabiano M (1998) Biochemical composition of particulate organic matter and bacterial dynamics at the sediment–water interface in a Mediterranean seagrass system. Hydrobiologia 363:241–251

    Google Scholar 

  • Danovaro R, Anno AD, Pusceddu A, Marrale D, Croce ND, Fabiano M, Tselepides A (2000) Biochemical composition of pico-, nano-, and micro-particulate organic matter and bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean). Prog Oceanogr 46:279–310

    Google Scholar 

  • Dhargalkar VK, Matondkar SP, Verlecar XN (1996) Seasonal variations in carbon budget in water column off Princess Astrid coast, Antarctica. In: Department of Ocean Development India (ed) Scientific Report: twelfth Indian expedition to Antarctica. Department of Ocean Development, New Delhi, pp 259–266

    Google Scholar 

  • Díaz E, Valencia V, Villate F (2007) Size-fractionated seston abundance and biochemical composition, over the anchovy spawning period in the Basque shelf (Bay of Biscay), during years 2000 and 2001. J Exp Mar Biol Ecol 341:45–59

    Google Scholar 

  • DiTullio GR, Laws EA (1986) Estimates of phytoplankton N uptake based on 14CO2 incorporation into protein. Limnol Oceanogr 28:177–185

    Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Google Scholar 

  • Eadie BJ, Jeffrey LM (1973) δ13C analyses of oceanic particulate organic matter. Mar Chem 1:199–209

    Google Scholar 

  • Fabiano M, Zavattarelli M, Palmero S (1984) Observations sur la matiere organique particulaire en Mer Ligure (chlorophylle, proteines, glucides, lipides). Tethys 11:133–140

    Google Scholar 

  • Fabiano M, Pusceddu A (1998) Total and hydrolizable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 19:125–132

    Google Scholar 

  • Fabiano, M, Povero P, Danovaro R (1993) Distribution and composition of particulate organic matter in the Ross Sea (Antarctica). Polar Biol 13:525–533

    Google Scholar 

  • Fabiano, M, Povero P, Danovaro R (1996) Particulate organic matter composition on Terra Nova Bay (Ross Sea, Antarctica) during summer 1990. Antarct Sci 8(1):7–13

    Google Scholar 

  • Fabiano M, Danovaro R, Povero P (1999a) Vertical distribution and biochemical composition of pico-and microparticulate organic matter in the Ross Sea (Antarctica). In: Spezie G, Manzella GMR (eds) Oceanography of the Ross Sea Antarctica. Springer, Milan, pp 233–246

    Google Scholar 

  • Fabiano M, Povero P, Danovaro R, Misic C (1999b) Particulate organic matter composition in a semi-enclosed Peri-antarctic system: the Straits of Magellan. Sci Mar 63:89–98

    Google Scholar 

  • Fernández-Reiriz, MJ, Perez-camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Google Scholar 

  • Fichez R (1991) Suspended particulate organic matter in a Mediterranean submarine cave. Mar Biol 108:167–174

    Google Scholar 

  • Fiset C, Liefer J, Irwin AJ, Finkel ZV (2017) Methodological biases in estimates of macroalgal macromolecular composition. Limnol Oceanogr-Meth 15(7):618–630

    Google Scholar 

  • Fogg GE (1956) Photosynthesis and formation of Fats in a Diatom. Ann Bot-London 20(2):265–285

    Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    Google Scholar 

  • Foy RH, Smith RV (1980) The role of carbohydrate accumulation in the growth of planktonic Oscillatoria species. Brit Phycol J 15:139–150

    Google Scholar 

  • Friedman O, Dubinsky Z, Arad S (1991) Effect of light intensity on growth and polysaccharide production in red and blue-green Rhodophyta unicells. Bioresource Technol 38:105–110

    Google Scholar 

  • Gibson CE (1978) Field and Laboratory observations on the temporal and spatial variation of carbohydrate content in planktonic blue-green algae in Lough Neagh, Northern Ireland. J Ecol 66:97–115

    Google Scholar 

  • Goswami SC, Rao TSS, Matondkar SGP (1981) Biochemical studies on some zooplankton off the west coast of India Mahasagar. Indian J Mar Sci 14(4):313–316

    Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104(3):313–326

    Google Scholar 

  • Handa N (1969) Carbohydrate metabolism in the marine diatom Skeletonema costatum. Mar Biol 4:208–214

    Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GW (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Google Scholar 

  • Haug A, Myklestad S, Sakshaug E (1973) Studies on the phytoplankton ecology of the Trondheimsfjord. I.: the chemical composition of phytoplankton populations. J Exp Mar Biol Ecol 11:15–26

    Google Scholar 

  • Healey FP, Hendzel LL (1979) Indicators of phosphorous and nitrogen deficiency in five algae in culture. J Fish Res Board Can 36:442–453

    Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons, Oxford, pp 114–122

    Google Scholar 

  • Irwin AJ, Finkel ZV, Schofield OM, Falkowski PG (2006) Scalingup from nutrient physiology to the size-structure of phytoplankton communities. J Plankton Res 28(5):459–471

    Google Scholar 

  • Isla E, Homs P, Sañé E, Escribano R, Claramunt G, Teixidó N (2010) Biochemical composition of seston in two upwelling sites within the Humboldt Current System (21°S to23°S): summer conditions. J Marine Syst 82:61–71

    Google Scholar 

  • Jo N, Kang JJ, Park WG, Lee BR, Yun MS, Lee JH, Kim SM, Lee D, Joo H, Lee JH, Ahn SH, Lee SH (2017) Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea. Deep-Sea Res Pt II 143:82–90

    Google Scholar 

  • Kakinuma M, Coury DA, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Amano H (2006) Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol 149(1):97

    Google Scholar 

  • Kang JJ, Joo H, Lee JH, Lee JH, Lee HW, Lee D, Lee SH (2017) Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea. Deep-Sea Res Pt II 143:73–81

    Google Scholar 

  • Kilham SS, Kreeger DA, Goulden CE, Lynn SG (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biol 38:591–596

    Google Scholar 

  • Kim BK, Lee JH, Yun MS, Joo HT, Song HJ, Yang EJ, Chung KH, Kang SH, Lee SH (2015) High lipid composition of particulate organic matter in the northern Chukchi Sea, 2011. Deep-Sea Res Pt II 120:72–81

    Google Scholar 

  • Kim BK, Lee JH, Joo H, Song HJ, Yang EJ, Lee SH, Lee SH (2016) Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep-Sea Res Pt ΙI 123:42–49

    Google Scholar 

  • Kim BK, Lee S, Ha SY, Jung J, Kim TW, Yang EJ, Lee SH (2018) Vertical distributions of macromolecular composition of particulate organic matter in the water column of the Amundsen Sea Polynya during the summer in 2014. J Geophys Res-Oceans 123(2):1393–1405

    Google Scholar 

  • Kjeldahl JGCT (1883) New Method for the Determination of Nitrogen in Organic Substances. Zeitschr f analyt Chem 22(1):366–382

    Google Scholar 

  • Konopka A, Schnur M (1980) Effect of light intensity in macromolecular synthesis in cyanobacteria. Microb Ecol 6:291–301

    Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415(2):134–144

    Google Scholar 

  • Lancelot C, Billen G (1984) Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol Oceanogr 29(4):721–730

    Google Scholar 

  • Lancelot C, Mathot S (1985) Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short and long-term incubations with 14C-bicarbonate II Phaeocystis pouchetii colonial population. Mar Biol 86:227–232

    Google Scholar 

  • Lawrence JM (1976) Patterns of lipid storage in post-metamorphic marine invertebrates. Am Zool 16(4):747–762

    Google Scholar 

  • Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res Pt I 38(1):143–167

    Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol-Prog Ser 307:279–306

    Google Scholar 

  • Lee SH, Kim HJ, Whitledge TE (2009) High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea. Cont Shelf Res 29:1689–1696

    Google Scholar 

  • Lee SH, Yun MS, Kim BK, Saitoch SI, Kang CK, Kang SH, Whitledge TE (2013) Latitudinal carbon productivity in the Bering and Chukchi Sea. Cont Shelf Res 59:28–36

    Google Scholar 

  • Lee JH, Lee D, Kang JJ, Joo HT, Lee JH, Lee HW, Ahn SH, Lee SH (2017) The effects of different environmental factors on biochemical composition of particulate organic matters in Gwangyang Bay Korea. Biogeosciences 14:1903–1917

    Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539

    Google Scholar 

  • Liebezeit G (1984) Particulate carbohydrates in relation to phytoplankton in the euphotic zone of the Bransfield Strait. Polar Biol 2(4):225–228

    Google Scholar 

  • Lindqvist K, Lignell R (1997) Intracellular partitioning of 14CO2 in phytoplankton during a growth season in the northern Baltic. Mar Ecol-Prog Ser 152:41–50

    Google Scholar 

  • Lizotte MP, Sullivan CW (1992) Biochemical composition and photosynthate distribution in sea ice microalgae of McMurdo Sound, Antarctica: evidence for nutrient stress during the spring bloom. Antarct Sci 4:23–30

    Google Scholar 

  • Lombardi AT, Wangersky PJ (1991) Influence of phosphorous and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol-Prog Ser 77:39–47

    Google Scholar 

  • Lourenço SO, Barbarino E, DePaula JC, Pereira LODS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res 50(3):233–241

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36(3):510–522

    Google Scholar 

  • Madariaga I, Fernandez E (1990) Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J Mar Biol Assoc UK 70:531–543

    Google Scholar 

  • Madariaga I, Joint I (1992) A comparative study of phytoplankton physiological indicators. J Exp Mar Biol Ecol 158:149–165

    Google Scholar 

  • Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J Food Compos Anal 14(1):93–100

    Google Scholar 

  • Marsh JB, Weinstein WJ (1966) A simple charring method for determination of lipids. J Lipid Res 7:574–576

    Google Scholar 

  • Matsuda O, Ishikawa S, Kawaguchi K (1987) Seasonal variation of downward flux of particulate organic matter under the Antarctic fast ice. In: Proceedings of the NIPR Symposium on Polar Biology, pp 23–34

    Google Scholar 

  • Matsuda O, Ishikawa S, Kawaguchi K (1990) Seasonal variation of particulate organic matter under the Antarctic fast ice and its importance to benthic life. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Springer, Berlin, pp 143–148

    Google Scholar 

  • Mayzaud P, Chanut JP, Ackman RG (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar Ecol-Prog Ser 56:189–204

    Google Scholar 

  • McBride MM, Dalpadado P, Drinkwater KF, Godø OR, Hobday AJ, Hollowed AB, Hofmann EE (2014) Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries ICES J Mar Sci 71(7):1934–1955

    Google Scholar 

  • McLaughlin FA, Carmack EC (2010) Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003- 2009. Geophys Res Lett 37:L24602

    Google Scholar 

  • Moal J, Martin-Jezequel V, Harris RP, Samain JF, Poulet SA (1987) Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanol Acta 10:339–346

    Google Scholar 

  • Modica A, Scilipoti D, La Torre R, Manganaro A, Sarà G (2006) The effect of mariculture facilities on biochemical features of suspended organic matter (southern Tyrrhenian, Mediterranean). Estuar Coast Shelf S 66:177–184

    Google Scholar 

  • Morán XAG, López-Urrutia A, Calvo-Díaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137–1144

    Google Scholar 

  • Morris I, Glover HE, Entsch CS (1974) Products of photosynthesis by marine phytoplankton: the effect of environmental factors on the relative rates of protein synthesis. Mar Biol 27:1–9

    Google Scholar 

  • Morris I, Skea W (1978) Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Mar Biol 47:303–312

    Google Scholar 

  • Morris I (1981) Photosynthetic products, physiological state, and phytoplankton growth. Can B Fish Aquat Sci 210:83–102

    Google Scholar 

  • Navarro JM, Clasing E, Urrutia G, Asencio G, Stead R, Herrera C (1993) Biochemical composition and nutritive value of suspended particulate matter over a tidal flat of southern Chile. Estuar Coast Shelf S 37:59–73

    Google Scholar 

  • Navarro JM, Thompson RJ (1995) Seasonal fluctuations in the size spectra, biochemical composition and nutritive value of the seston available to a suspension-feeding bivalve in a subarctic environment. Mar Ecol-Prog Ser 125:95–106

    Google Scholar 

  • Parrish CC (1987) Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet. Mar Ecol-Prog Ser 35:129–139

    Google Scholar 

  • Parrish CC, McKenzie CH, MacDonald BA, Hatfiel EA (1995) Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar Ecol-Progr Ser 129:151–164

    Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific, Oxford, 274 p

    Google Scholar 

  • Pusceddu A, Cattaneo-Vietti R, Albertelli G, Fabiano M (1999) Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biol 22(2):124–132

    Google Scholar 

  • Qasim SZ (1977) Contribution of zooplankton in the food chains of some warm water environments. In: Proceedings of the symposium on warm water zooplankton, UNESCO/NIO, Goa, India, 14–19 Oct 1976, pp 700–708

    Google Scholar 

  • Randall RC, Lee H, Ozretich RJ, Lake JL, Pruell RJ (1991) Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ Toxicol Chem 10(11):1431–1436

    Google Scholar 

  • Sakshaug E, Myklestad S (1973) Studies on the phytoplankton of the Trondheimsfjord. III. dynamics of phytoplankton blooms in relation to environmental factors, bioassay experiments and parameters for the physiological state of the populations. J Exp Mar Biol Ecol 11:157–188

    Google Scholar 

  • Savoye N, Aminot A, Treguer P, Fontugne M, Naulet N, Kérouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar Ecol-Progr Ser 255:27–41

    Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    Google Scholar 

  • Sick LV (1976) Nutritional effect of five species of marine algae on the growth, development, and survival of the brine shrimp Artemia salina. Mar Biol 35(1):69–78

    Google Scholar 

  • Smith Jr WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166

    Google Scholar 

  • Smith REH, Geider RJ (1985) Kinetics of intracellular carbon allocation in a marine diatom. J Exp Mar Biol Ecol 93:191–210

    Google Scholar 

  • Smith REH, Clement P, Cota GF, Li WKW (1987) Intracellular photosynthate allocation and the control of Arctic marine ice algal production. J Phycol 23:251–263

    Google Scholar 

  • Smith REH, Gosselin M, Kattner G, Legendre L, Peasant S (1997a) Biosynthesis of macromolecular and lipid classes by phytoplankton in the Northeast Water Polynya. Mar Ecol- Prog Ser 147:231–242

    Google Scholar 

  • Smith REH, Gosselin M, Tahuchi S (1997b) The influence of major inorganic nutrients on the growth and physiology of high arctic ice algae. J Marine Syst 11:63–70

    Google Scholar 

  • Smith WO Jr, Nelson DM, DiTullio GR, Leventer AR (1996) Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18465

    Google Scholar 

  • Steinberg DK, Saba GK (2008) Nitrogen consumption and metabolism in marine zooplankton. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd eds. Academic Press, pp 1135–1196

    Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Google Scholar 

  • Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Jones CG, Lawton JH (eds) Linking species and ecosystem. Springer, Boston, pp 240–252

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, 439 p

    Google Scholar 

  • Suárez I, Marañón E (2003) Photosynthate allocation in a temperature sea over an annual cycle: the relationship between protein synthesis and phytoplankton physiological state. J Sea Res 50:285–299

    Google Scholar 

  • Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biot 54:112–117

    Google Scholar 

  • Tanoue E, Handa N (1987) Monosaccharide composition of marine particles and sediments from the Bering Sea and northern North Pacific. Oceanol Acta 10(1):91–99

    Google Scholar 

  • Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf S 38(3):219–233

    Google Scholar 

  • Tomaselli L, Boldrini G, Margheri MC (1997) Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J Appl Phycol 9(1):37–43

    Google Scholar 

  • Tynan CT, DeMaster DP (1997) Observations and predictions of Arctic climatic change: potential effects on marine mammals. Arctic 50(4):308–322

    Google Scholar 

  • Volkman JK, Tanoue E (2002) Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr 58:265–279

    Google Scholar 

  • Wainman BC, Lean DRS (1992) Carbon fixation into lipid in small freshwater lakes. Limnol Oceanogr 37:956–965

    Google Scholar 

  • Wong K, Cheung PC (2001) Influence of drying treatment on three Sargassum species. J Appl Phycol 13(1):43–50

    Google Scholar 

  • Yun MS, Lee DB, Kim BK, Kang JJ, Lee JH, Yang EJ, Park WG, Chung KH, Lee SH (2015) Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep-Sea Res Pt II 120:82–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Heon Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhavya, P.S., Kim, B.K., Jo, N. et al. A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry. Ocean Sci. J. 54, 1–14 (2019). https://doi.org/10.1007/s12601-018-0061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-018-0061-8

Keywords

  • biochemical composition
  • phytoplankton
  • physiological status
  • POM