Ocean Science Journal

, Volume 53, Issue 3, pp 461–474 | Cite as

Experiments on Surface Waves Interacting with Flexible Aquatic Vegetation

  • Luca CavallaroEmail author
  • Antonino Viviano
  • Giovanni Paratore
  • Enrico Foti


Surface wave interaction with aquatic vegetation appears to play a key role in coastal hydro-morpho-dynamics. As an example, the presence of a dense meadow at intermediate water depth is usually associated with a stable and resilient shore. Wave-meadow interactions are investigated here by means of physical modelling, with a focus on wave height distribution and hydrodynamics. The central part of a wave flume is covered by flexible artificial seagrass, composed of polyethylene leaves. This vegetation is tested in both near emergent and submerged conditions. The wave height reduction is evaluated by means of a drag coefficient defined from linear wave theory, which contains all the unknowns of the adopted methodology. The behaviour of such a coefficient is investigated as a function of a wave related Reynolds number. The influence of the flexibility of the leaves is also considered, together with a wave frequency parameter. The results show a complex behaviour with three different trends for near rigid, intermediate or highly flexible leaves. Amplitudes of the orbital velocities are investigated and show a fairly good match with the linear wave theory. On the contrary, the mean velocity along the water column appears to be modified by the seagrass for submerged leaves.


water waves vegetation hydrodynamics 


  1. Asano T, Tsutsui S, Sakai T (1988) Wave damping characteristics due to seaweed. In: Proceedings of 35th coastal engineering conference in Japan, Japan Society of Civil Engineers (JSCE), pp 138–142 (in Japanese)Google Scholar
  2. Bouma TJ, De Vries MB, Low E, Peralta G, Tnczos IC, van de Koppel J, Herman PMJ (2005) Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86(8):2187–2199. doi:10.1890/04-1588CrossRefGoogle Scholar
  3. Bradley K, Houser C (2009) Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. J Geophys Res-Earth 114(F1). doi:10.1029/2007JF000951Google Scholar
  4. Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370. doi:10.1016/0304-3770(86)90031-8CrossRefGoogle Scholar
  5. Cavallaro L, Lo Re C, Paratore G, Viviano A, Foti E (2010) Response of Posidonia Oceanica to wave motion in shallow-waters-preliminary experimental results. In: Proceedings of 32nd Conference on Coastal Engineering (Shanghai, China), pp 49–59Google Scholar
  6. Cavallaro L, Scandura P, Foti E (2011) Turbulence-induced steady streaming in an oscillating boundary layer: on the reliability of turbulence closure models. Coast Eng 58(4):290–304CrossRefGoogle Scholar
  7. Dalrymple RA, Kirby JT, Hwang PA (1984) Wave diffraction due to areas of energy dissipation. J Waterw Port Coast 110(1):67–79. doi:10.1061/(ASCE)0733-950X(1984)110:1(67)CrossRefGoogle Scholar
  8. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. World Scientific, Singapore, 368 pGoogle Scholar
  9. Dingemans M (1997) Wave propagation over uneven bottoms. Advanced Series on Ocean Engineering 13, World Scientific, Singapore, 700 pGoogle Scholar
  10. Goda Y, Suzuki T (1976) Estimation of incident and reflected waves in random wave experiments. In: Proceedings of 15th Conference on Coastal Engineering, Honolulu, Hawaii, pp 828–845Google Scholar
  11. Houser C, Trimble S, Morales B (2015) Influence of blade flexibility on the drag coefficient of aquatic vegetation. Estuar Coast 38(2):569–577CrossRefGoogle Scholar
  12. John BM, Shirlal KG, Rao S, Rajasekaran C (2016) Effect of artificial seagrass on wave attenuation and wave run-up. Int J Ocean Clim Sys 7(1):14–19. doi:10.1177/1759313115623163CrossRefGoogle Scholar
  13. Kobayashi N, Raichle AW, Asano T (1993) Wave attenuation by vegetation. J Waterw Port C 119(1):30–48. doi:10.1061/(ASCE)0733-950X(1993)119:1(30)CrossRefGoogle Scholar
  14. Koch EW, Sanford LP, Chen SN, Shafer DJ, Mckee SJ (2006) Waves in seagrass systems: review and technical recommendations. US Army Corps of Engineers, ERDC TR-06-15, 92 pGoogle Scholar
  15. Koftis T, Prinos P, Stratigaki V (2013) Wave damping over artificial posidonia oceanica meadow: a large-scale experimental study. Coast Eng 73:71–83. doi:10.1016/j.coastaleng.2012.10.007CrossRefGoogle Scholar
  16. Lakshmanan N, Kantharaj M, Sundar V (2012) The effects of flexible vegetation on forces with a keulegan-carpenter number in relation to structures due to long waves. J Mar Sci App 11(1):24–33. doi:10.1007/s11804-012-1102-9CrossRefGoogle Scholar
  17. Longuet-Higgins MS (1953) Mass transport in water waves. Philos T R Soc A 245(903):535–581. doi:10.1098/rsta.1953.0006CrossRefGoogle Scholar
  18. Lowe RJ, Koseff JR, Monismith SG (2005) Oscillatory flow through submerged canopies: 1. velocity structure. J Geophys Res-Oceans 110(10):1–17Google Scholar
  19. Luhar M, Nepf H (2016) Wave-induced dynamics of flexible blades. J Fluid Struct 61:20–41. doi:10.1016/j.jfluidstructs.2015.11.007CrossRefGoogle Scholar
  20. Luhar M, Nepf HM (2011) Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr 56(6):2003–2017. doi:10.4319/lo.2011.56.6.2003CrossRefGoogle Scholar
  21. Luhar M, Coutu S, Infantes E, Fox S, Nepf H (2010) Waveinduced velocities inside a model seagrass bed. J Geophys Res-Oceans 115(C12):C12005. doi:10.1029/2010JC006345CrossRefGoogle Scholar
  22. Luhar M, Infantes E, Orfila A, Terrados J, Nepf HM (2013) Field observations of wave-induced streaming through a submerged seagrass (posidonia oceanica) meadow. J Geophys Res-Oceans 118(4):1955–1968CrossRefGoogle Scholar
  23. Mendez FJ, Losada IJ (2004) An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast Eng 51(2):103–118. doi:10.1016/j.coastaleng.2003.11.003CrossRefGoogle Scholar
  24. Mendez FJ, Losada IJ, Losada MA (1999) Hydrodynamics induced by wind waves in a vegetation field. J Geophys Res-Oceans 104(C8):18383–18396. doi:10.1029/1999JC900119CrossRefGoogle Scholar
  25. Miche R (1944) Mouvements ondulatoires de la mer en profondeur constante ou decroissante. Annales des Ponts et Chaussees 114:25–78, 131–164, 270–292, 369–406 (in French)Google Scholar
  26. Peralta G, Brun FG, Prez-Llorns JL, Bouma TJ (2006) Direct effects of current velocity on the growth, morphometry and architecture of seagrasses: a case study on zostera noltii. Mar Ecol-Prog Ser 327:135–142CrossRefGoogle Scholar
  27. Sanchez-Gonzalez JF, Sanchez-Rojas V, Memos CD (2011) Wave attenuation due to posidonia oceanica meadows. J Hydraul Res 49(4):503–514. doi:10.1080/00221686.2011.552464CrossRefGoogle Scholar
  28. Scandura P (2007) Steady streaming in a turbulent oscillating boundary layer. J Fluid Mech 571:265–280CrossRefGoogle Scholar
  29. Scandura P, Armenio V, Foti E (2009) Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan-Carpenter and low Reynolds numbers. J Fluid Mech 627:259–290. doi:10.1017/S0022112009006016CrossRefGoogle Scholar
  30. Starr VP (1947) A momentum integral for surface waves in deep water. J Mar Res 6(2):126–135Google Scholar
  31. Sumer B, Fredsoe J (1997) Hydrodynamics around cylindrical structures. World Scientific, Singapore, 530 pGoogle Scholar
  32. Wang X, Xie W, Zhang D, He Q (2016) Wave and vegetation effects on flow and suspended sediment characteristics: a flume study. Estuar Coast Shelf S 182:1–11. doi:10.1016/j.ecss.2016.09.009CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Nature B.V. 2018

Authors and Affiliations

  • Luca Cavallaro
    • 1
    Email author
  • Antonino Viviano
    • 1
  • Giovanni Paratore
    • 1
  • Enrico Foti
    • 1
  1. 1.Department Civil Engineering and ArchitectureUniversity of CataniaCataniaItaly

Personalised recommendations