Advertisement

Ocean Science Journal

, Volume 53, Issue 2, pp 337–353 | Cite as

Fine-scale Microbial Communities Associated with Manganese Nodules in Deep-sea Sediment of the Korea Deep Ocean Study Area in the Northeast Equatorial Pacific

  • Hyeyoun Cho
  • Kyeong-Hong Kim
  • Seung Kyu Son
  • Jung-Ho HyunEmail author
Article
Part of the following topical collections:
  1. Deep Seabed Mining Resources

Abstract

Despite its potential significance for industrial utilization, any activities associated with the mining of manganese (Mn) nodules might have substantial impacts on benthic ecosystems. Because microorganisms respond quickly to changing environmental conditions, a study of microbial communities provides a relevant proxy to assess possible changes in benthic ecosystems associated with mining activities. We investigated fine-scale microbial community composition and diversity inside and on the surface of Mn nodules and in nearby deep-sea sediments in the Korea Deep Ocean Study (KODOS) area located in the Clarion-Clipperton Fracture Zone (CCFZ) of the northeast equatorial Pacific. Although microbial cell density was lower within nodules (3.21 × 106 cells g-1) than in sediment (2.14 × 108 cells g-1), nodules provided a unique habitat for microorganisms. Manganese-oxidizing bacteria including Hyphomicrobium and Aurantimonas in Alphaproteobacteria and Marinobacter in Gammaproteobacteria were abundant in nodules, which implied that these bacteria play a significant role in nodule formation. In contrast, Idiomarina in Gammaproteobacteria and Erythrobacter and Sulfitobacter in Alphaproteobacteria were abundant in sediments. Meanwhile, Thaumarchaeota, a phylum that consists of ammonia-oxidizing chemolithoautotrophs, were the predominant archaeal group both in nodules and sediment. Overall, microbial communities in Mn nodules were unique compared to those observed in sediments. Furthermore, the phylogenetic composition of microorganisms in the KODOS area was distinguishable from that in the nodule provinces claimed by China and Germany in the CCFZ and nodule fields in the central South Pacific Gyre, respectively.

Keywords

Clarion-Clipperton Fracture Zone (CCFZ) deepsea sediment microbial community microbial diversity 16S rRNA gene Mn nodule 

References

  1. Amsbaugh JK, Van der Voort JL (1982) The ocean mining industry: a benefit for every risk? Oceanus 25:22–27Google Scholar
  2. Anderson CR, Davis RE, Bandolin NS, Baptista AM, Tebo BM (2011) Analysis of in situ manganese (II) oxidation in the Columbia River and offshore plume: linking Aurantimonas and the associated microbial community to an active biogeochemical cycle. Environ Microbiol 13:1561–1576CrossRefGoogle Scholar
  3. Anderson CR, Dick GJ, Chu ML, Cho JC, Davis RE, Bräuer SL, Tebo BM, DeLong EF (2009) Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 26:189–198CrossRefGoogle Scholar
  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microb 74:7724–7736CrossRefGoogle Scholar
  5. Bidle KD, Manganelli M, Azam F (2002) Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298:1980-1983CrossRefGoogle Scholar
  6. Blöthe M, Wegorzewski A, Müller C, Simon F, Kuhn T, Schippers A (2015) Manganese-cycling microbial communities inside deep-sea manganese nodules. Environ Sci Technol 46:7629–7700Google Scholar
  7. Böer SI, Hedtkamp SIC, van Beusekom JEE, Fuhrman JA, Boetius A, Ramette A (2009) Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME J 3:780–791CrossRefGoogle Scholar
  8. Chi S-B, Lee H-B, Hyeong K, Ju S-J, Lee GC, Ham DJ (2008) Geotechnical properties of pelagic red clay in northeast equatorial Pacific. J Korean Soc Oceanogr 13:286–294Google Scholar
  9. Danovaro R, Marrale D, Dell’Anno A, Croce ND, Tselepides A, Fabiano M (2000) Bacterial response to seasonal changes in labile organic matter composition on the continental shelf and bathyal sediments of the Cretan Sea. Prog Oceanogr 46:345–366CrossRefGoogle Scholar
  10. DeLong EF (1992) Archaea in coastal marine environments. P Natl Acad Sci USA 89:5685–5689CrossRefGoogle Scholar
  11. Denner EBM, Vybiral D, Kobližek M, Kämpfer, Busse H-J, Velimirov B (2002) Erythrobacter citreus sp. nov., a yellowpigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Micr 52:1655–1661Google Scholar
  12. Duran R (2010) Marinobacter. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1725–1735CrossRefGoogle Scholar
  13. Dick GJ, Tebo BM (2010) Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol 12:1334–1347CrossRefGoogle Scholar
  14. Durbin AM, Teske A (2010) Sediment-associated microdiversity within the Marine Group I Crenarchaeota. Env Microbiol Rep 2:693–703CrossRefGoogle Scholar
  15. Frigaard NU, Marinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria an Archaea. Nature 439:847–850CrossRefGoogle Scholar
  16. Gillan DC, Danis B (2007) The archaebacterial communities in Antarctic bathypelagic sediments. Deep-Sea Res Pt II 54:1682–1690CrossRefGoogle Scholar
  17. Glasby G (2006) Manganese: predominant role of nodules and crusts. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 371–427CrossRefGoogle Scholar
  18. Glasby G, Stoffers P, Sioulas A, Thijssen T, Frieddrich G (1982) Manganese nodule formation in the Pacific Ocean: a general theory. Geo-Mar Lett 2:47–53CrossRefGoogle Scholar
  19. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Micr 56:523–527CrossRefGoogle Scholar
  20. Hein JR (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14CrossRefGoogle Scholar
  21. Hyun J-H (2006) Resource-limited heterotrophic prokaryote production and its potential environmental impact associated with Mn nodule exploitation in the northeast Equatorial Pacific. Microb Ecol 52:244–252CrossRefGoogle Scholar
  22. Hyun J-H, Kim K-H, Jung H-S, Lee K-Y (1998) Potential environmental impact of deep seabed manganese nodule mining on the Synechococcus (cyanobacteria) in the northeast equatorial Pacific: effect of bottom water-sediment slurry. Mar Georesour Geotec 16:133–143CrossRefGoogle Scholar
  23. Ivanova EP, Romanenko LA, Chun J, Matte MH, Matte GR, Mikhailov VV, Svetashev VI, Hug A, Maugel T, Colwell RR (2000) Idiomarina gen. nov., comprising novel indigenous deepsea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Micr 50:901–907CrossRefGoogle Scholar
  24. Jeong KS, Kang JK, Lee KY, Jung HS, Chi SB, Ahn SJ (1996) Formation and distribution of manganese nodule deposit in the northwestern margin of Clarion-Clipperton fracture zones, northeast equatorial Pacific. Geo-Mar Lett 16:123–131CrossRefGoogle Scholar
  25. Jorgensen SL, Hannisdal B, Lansén A, Baumberger T, Flesland K, Fonseca R, Øvreås L, Steen IH, Thorseth IH,. Pedersen RB, Schleper C (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. P Natl Acad Sci USA 109:2846–2855CrossRefGoogle Scholar
  26. Jumars P (1981) Limits in predicting and detecting community responses to manganese nodule mining. Mar Mining 3:213–229Google Scholar
  27. Jung H-S, Jeong K-S, Lee K-Y, Kang J-K, Jung M-Y (1990) Origin of manganese nodules and their distribution in the KODOS-89 area, northeastern equatorial Pacific. J Korean Soc Oceanogr 25:189–204Google Scholar
  28. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510CrossRefGoogle Scholar
  29. Khripounoff A, Caprias J-C, Crassous P (2006) Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth. Limnol Oceanogr 51:2033–2041CrossRefGoogle Scholar
  30. Könneke M, Bernhard AE, la Torre de JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammoniaoxidizing marine archaeon. Nature 437:543–546CrossRefGoogle Scholar
  31. Lane DJ (1991) 16S/23S rRNA sequencing In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–147Google Scholar
  32. Lee H-B, Chi S-B, Park C-K, Kim K-H, Ju S-J, Oh J-K (2008) Physical properties of surface sediments of the KO (Korea Reserved) 1, 2, and 5 area, northeastern equatorial Pacific. J Korean Soc Oceanogr 13:168–177Google Scholar
  33. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400CrossRefGoogle Scholar
  34. Liao L, Xu X-W, Jiang X-W, Wang C-S, Zhang D-S, Ni J-Y, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585CrossRefGoogle Scholar
  35. Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DF, Smith CR, Church MJ (2017) From the surface to the deep-sea bacterial distributions across polymetallic nodule fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front Microbiol 8:1696CrossRefGoogle Scholar
  36. Logue JB, Findlay SEG, Comte J (2015) Editorial: microbial responses to environmental changes. Front Microbiol 6:1364CrossRefGoogle Scholar
  37. Mewes K, Mogollón, Picard A, Rühlemann C, Kuhn T, Nöthen K, Kasten S (2014) Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone. Deep-Sea Res Pt I 91:125–141CrossRefGoogle Scholar
  38. MOLTM (2010) The development of deep seabed mineral resources. I. Resources exploration and Deep Sea Environmental Study. Ministry of Land, Transport, and Maritime Affairs, CRPM54901-2171-5, 522 p (in Korean)Google Scholar
  39. MOLTM (2011) The development of deep seabed mineral resources. I. Resources exploration and Deep Sea Environmental Study. Ministry of Land, Transport, and Maritime Affairs, BSPM55650- 2267-5, 521 p (in Korean)Google Scholar
  40. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266CrossRefGoogle Scholar
  41. Nath BN, Khadge NH, Nabar S, Raghukumar C, Ingole BS, Valsangkar AB, Sharma R, Srinivas K (2012) Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment. Environ Monit Assess 184:2829–2844CrossRefGoogle Scholar
  42. Nath BN, Parhiban G, Banaulika S, Sarkar S (2005) Alterations in geochemical associations in artificially disturbed deep-sea sediments. Mar Georesour Geotec 23:373–400CrossRefGoogle Scholar
  43. Nitahara S, Kato S, Urabe T, Usui A, Yamagishi A (2011) Molecular characterization of the microbial community in hydrogenetic ferromanganese crusts of the Takuyo-Daigo Seamount, northwest Pacific. FEMS Microbial Lett 321:121–129CrossRefGoogle Scholar
  44. Nitahara S, Kato S, Usui A, Urabe T, Suzuki K, Yamagishi A (2017) Archaeal and bacterial communities in deep-sea hydrogenetic ferromanganese crusts on old seamounts of the northwestern Pacific. PLoS One 12:e0173071CrossRefGoogle Scholar
  45. Padan JW (1990) Commercial recovery of deep seabed manganese nodules: twenty years of accomplishments. Mar Mining 9:87–103Google Scholar
  46. Park B-J, Park S-J, Yoon D-N, Schouten S, Sinninghe Damsté JS, Rhee S-K (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microb 76:7575–7587CrossRefGoogle Scholar
  47. Pattan JN, Mudholkar AV (1990) The oxidation-state of manganese in ferromanganese nodules and deep-sea sediments form the central Indian-ocean. Chem Geol 85:171–181CrossRefGoogle Scholar
  48. Rodrigues N, Sharma R, Nath BN (2001) Impact of benthic disturbance on megafauna in Central Indian Basin. Deep-Sea Res Pt II 48:3411–3426CrossRefGoogle Scholar
  49. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864CrossRefGoogle Scholar
  50. Sharma R, Nagender Nath B, Jai Sankar S (2005) Monitoring the impact of simulated deep-sea mining in central Indian Basin. Mar Georesour Geotec 23:331–338CrossRefGoogle Scholar
  51. Shiraishi F, Mitsunobu S, Suzuki K, Hoshino T, Morono Y, Inagaki F (2016) Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: implications for biogeochemical cycles. Earth Planet Sc Lett 447:10–20CrossRefGoogle Scholar
  52. Son J, Kim KH, Kim HJ, Ju S-J, Yoo CM (2014) Evaluation of similarity of water column properties and sinking particles between impact and preserved sites for environmental impact assessments in the Korea contracted area for manganese nodule development, NE Pacific. Ocean Polar Res 36:423–435CrossRefGoogle Scholar
  53. Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov.: a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 64:354–365Google Scholar
  54. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microb 66:5066–5072CrossRefGoogle Scholar
  55. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  56. Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)- oxidizing bacteria isolated from submarine basalts at Loihi seamount. Geomicrobiol J 22:127–139CrossRefGoogle Scholar
  57. Thiel H, Schriever G, Ahnert A, Bluhm H, Borowski C, Vopel K (2001) The large-scale environmental impact experiment DISCOL-Reflection and foresight. Deep-Sea Res Pt II 48:3869–3882CrossRefGoogle Scholar
  58. Tully BJ, Heidelberg JF (2013) Microbial communities associated with ferromanganese nodules and the surrounding sediments. Front Microbiol 4:161CrossRefGoogle Scholar
  59. Tyler PA (1970) Hyphimicrobia and the oxidation of manganese in aquatic ecosystems. Antonie van Leeuwenhoek 36:567–578CrossRefGoogle Scholar
  60. Vandieken V, Pester M, Finke N, Hyun J-H, Friedrich MW, Loy A, Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J 6:2078–2090CrossRefGoogle Scholar
  61. Vandieken V, Thamdrup B (2013) Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol 84:373–386CrossRefGoogle Scholar
  62. Wang C-S, Liao L, Xu H-X, Xu X-W, Wu M, Zhu L-Z (2010) Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone. J Microbiol 48:573–585CrossRefGoogle Scholar
  63. Wang X, Müller WEG (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol 27:375–383CrossRefGoogle Scholar
  64. Wang X, Schloβmacher U, Wiens M, Schröder, Müller WEG (2009a) Biogenic origin of polymetallic nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean: electron microscopic and EDX evidence. Mar Biotechnol 11:99–108CrossRefGoogle Scholar
  65. Wang X, Schröder HC, Schloβmacher U, Müller WEG (2009b) Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition. Geo-Mar Lett 29:85–91CrossRefGoogle Scholar
  66. Wegorzewski AV, Kuhn T (2014) The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion-Clipperton nodule belt of the Pacific Ocean. Mar Geol 357:123–138CrossRefGoogle Scholar
  67. Wu Y-H, Liao L, Wang C-S, Ma W-L, Meng F-X, Wu M, Xu X-W (2013) A comparison of microbial communities in deep-sea polymetallic modules and the surrounding sediments in the Pacific Ocean. Deep-Sea Res Pt I 79:40–49CrossRefGoogle Scholar
  68. Xu M, Wang P, Wang F, Xiao X (2005) Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers Conserv 14:3363–3380CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Nature B.V. 2018

Authors and Affiliations

  • Hyeyoun Cho
    • 1
  • Kyeong-Hong Kim
    • 2
  • Seung Kyu Son
    • 2
  • Jung-Ho Hyun
    • 1
    Email author
  1. 1.Department of Marine Sciences and Convergent Technology, College of Science and TechnologyHanyang UniversityAnsanKorea
  2. 2.Deep-sea and Seabed Mineral Resources Research CenterKIOSTBusanKorea

Personalised recommendations