Skip to main content
Log in

Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alloway BJ (1995) Heavy metals in soils. 2nd edn. Blackie Academic & Professional, London, 322 p

    Book  Google Scholar 

  • APHA (1999) Standard Method for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, 541 p

    Google Scholar 

  • Arica MY, Kacar Y, Genc O (2001) Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Tech 80:121–129

    Article  Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajorcaju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72:63–76

    Article  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metalresistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  Google Scholar 

  • Cruz CC, da Costa AC, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmiumbiosorption by dead Sargassum sp. biomass. Bioresource Tech 91(91): 249–257

    Article  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(37): 4311–4330

    Article  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21(21):2346–2357

    Article  Google Scholar 

  • El-Gendy MMA, Hassanein NM, Ibrahim HAE, El-Baky DHA (2011) Evaluation of some fungal endophytes of plant potentiality as low-cost adsorbents for heavy metals uptake from aqueous solution. Aust J Basic Appl Sci 5(5):466–473

    Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3(3):35–48

    Google Scholar 

  • Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X (2008) Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater 160:655–661

    Article  Google Scholar 

  • Faryal R, Sultan A, Tahir F, Ahmed S, Hameed A (2007) Biosorption of lead by indigenous fungi. Pak J Bot 39(39):615–622

    Google Scholar 

  • Guba EF (1929) Monograph of the genus Pestalotia de Notaris. Part1. Phytopathology 19:191–232

    Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:153–158

    Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena R, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(78):967–973

    Google Scholar 

  • Hach (2005) Procedures Manual DR 2800 Spectrophotometer. 1st edn. Hach Company, USA

    Google Scholar 

  • Hemambika B, Johncy RM, Kannan VR (2011) Biosorption of heavy metals by immobilized and deadfungal cells: a comparative assessment. J Ecol Nat Environ 3(3):168–175

    Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusariumsolani and Hypocrealixii isolated from petrol station soil. J Appl Microbiol 108(108):2030–2040

    Google Scholar 

  • Iram S, Zaman A, Iqbal Z, Shabbir R (2013) Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Polish J Environ Stud 22(22):691–697

    Google Scholar 

  • Iskandar NL, Zainudin NAIM, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23(23):824–830

    Article  Google Scholar 

  • Jeewon R, Liew CY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    Article  Google Scholar 

  • Kadirvelu K, Senthilkumar P, Thamaraiselvi K, Subburam V (2002) Activated carbon prepared from biomass as adsorbent: rlimination of Ni(II) from aqueous solution. Bioresource Tech 81:87–90

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillusniger. Bioresource Tech 70:95–104

    Article  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protoc 5(5):479–490

    Article  Google Scholar 

  • Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmitesaustralis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93

    Google Scholar 

  • Luo JM, Xiao X, Luo SL (2010) Biosorption of cadmium (II) from aqueous solutions byindustrial fungus Rhizopuscohnii. T Nonferr Metal Soc 20:1104–1111

    Article  Google Scholar 

  • Maharachchikumbura SN, Guo L-D, Ekachai C, Ali HB, Hyde KD (2011) Pestalotiopsis-morphology, phylogeny, biochemistry and diversity. Fungal Divers 50:167–187

    Article  Google Scholar 

  • Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89:58–71

    Google Scholar 

  • Nazli MF, Hashim NR (2010) Heavy metal concentrations in an important mangrove species, Sonneratiacaseolaris, in Peninsular Malaysia. Environ Asia 3(3):50–55

    Google Scholar 

  • Nriagu JO (1980) Global cadmium cycle. In: Nriagu JO (ed) Cadmium in the Environment. Part I: Ecological Cycling. Wiley, New York, pp 1–12

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  Google Scholar 

  • Onn ML (2012) Screening of mangrove endophytic fungi for bioactive compounds. M.S. Thesis, Universiti Malaysia Sarawak

    Google Scholar 

  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102:249–253

    Article  Google Scholar 

  • Pacyna J (1986) Atmospheric trace elements from natural and anthropogenic sources: toxic metals in the atmosphere. Wiley, New York

    Google Scholar 

  • Salvadori MR, Lepre LF, Ando RA, Nascimento CAO, Corrêa B (2013) Biosynthesis and Uptake of Copper Nanoparticles by Dead Biomass of Hypocrea lixii Isolated from the Metal Mine in the Brazilian Amazon Region. PloS ONE 8(8):e80519. doi:10.1371/journal.pone.0080519

    Article  Google Scholar 

  • Shazili NAM, Yunus K, Ahmad AS, Abdullah N, Rashid MKA (2006) Heavy metal pollution status in Malaysian aquatic environment. Aquat Ecosyst Health Manage 9(9):137–145

    Article  Google Scholar 

  • Steyaert RL (1949) Contribution à l'étudemonographique de Pestalotia de Not.et Monochaetia Sacco (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bull Jardin Bot État Bruxelles 19:285–354

    Article  Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsismicrospora, an endophytic fungus of Taxuswallachiana. Microbiology 142(142):435–440

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(28):2731–2739

    Article  Google Scholar 

  • Valix M, Tang J, Malik R (2001) Heavy metal tolerance of fungi. Mine Eng 14(14):499–505

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents forheavy metals removal and their future. Biotechnol Adv 27(27):195–226

    Article  Google Scholar 

  • Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microb Biot 20:265–272

    Article  Google Scholar 

  • Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, Lin W, Wu J, Proksch P (2009) Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. J Nat Prod 72(72):662–665

    Article  Google Scholar 

  • Yang HB, Tan N, Wu FJ, Liu HJ (2012) Biosorption of uranium (VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  Google Scholar 

  • Zhang Y, Zhang S, Liu X, Wen H, Wang M (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol 51(51):114–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Choo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, J., Sabri, N.B.M., Tan, D. et al. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Sci. J. 50, 445–453 (2015). https://doi.org/10.1007/s12601-015-0040-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-015-0040-2

Key words

Navigation