Skip to main content
Log in

Relative survival and detoxification enzyme activity in Dysdercus koenigii (Hemiptera: Pyrrhocoridae) exposed to β-cyfluthrin alone and its nanometric emulsion

  • Research
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Dysdercus koenigii, a global cotton pest, inflicts significant crop losses via sucking the moisture and oil contents from leaves and seeds. The growing environmental hazards with conventional pesticides have led to the exploration of nanotechnology to formulate alternative products and nanoemulsions as suitable insecticide delivery vehicles for target pests. We formulated nanoemulsions using β-cyfluthrin (a pyrethroid) and DMSO (Dimethyl sulfoxide) in 1:2, 1:4, 1:6, 1:8 and 1:10 proportions. The nanoemulsions (NE) were characterized morphologically and biophysically (size, pH, viscosity, PDI and zeta potential) by Transmission Electron Microscopy, Dynamic Light Scattering and Zeta Potential Analyzer. Each NE was transparent, stable, had 11.4–174.1 nm droplet size and, optimal PDI and zeta potential. The spherical and monodispersed 1:2 β-cyfluthrin + DMSO NE was found as the most optimal formulation inducing 100% mortality in D. koenigii fifth instars after 24 h; the NE (LD50 = 3.536 mg/L) displayed 44% higher efficacy than the β-cyfluthrin alone (LD50 = 5.059 mg/L). The LD50 dose of the 1:2 NE enhanced the activity of α-esterase, β-esterase, glutathione-S-transferase, and acetylcholinesterase in nymphs in comparison with β-cyfluthrin alone. The β-cyfluthrin nanoemulsion can act as a potential tool to manage D. koenigii after thorough field assessment and evaluation of the impact on non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not Applicable.

References

  • Abdelaal, K., Essawy, M., Quraytam, A., Abdallah, F., Mostafa, H., Shoueir, K., Fouad, H., Hassan, F. A., & Hafez, Y. (2021). Toxicity of essential oils nanoemulsion against Aphis craccivora and their inhibitory activity on insect enzymes. Processes, 9(4), 624. https://doi.org/10.3390/pr9040624

    Article  CAS  Google Scholar 

  • Al-Assiuty, B. A., Nenaah, G. E., & Ageba, M. E. (2019). Chemical profile, characterization and acaricidal activity of essential oils of three plant species and their nanoemulsions against Tyrophagus putrescentiae, a stored-food mite. Experimental and Applied Acarology, 79(3), 359–376. https://doi.org/10.1007/s10493-019-00432-x

    Article  CAS  PubMed  Google Scholar 

  • Amutha, C., Bupesh, G., Ramesh, R., Kavitha, P., & Subramanian, P. (2009). Cytochrome P450-dependent mixed function oxidases (MFO) system dynamics during the poly aromatic hydrocarbon (PAH) metabolism in green mussel Perna viridis (Linnaeus, 1758). Environmental Bioindicators, 4(1), 97–116. https://doi.org/10.1080/15555270902724117

    Article  CAS  Google Scholar 

  • Arianto, A., & Cindy, C. (2019). Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Open Access Macedonian Journal of Medical Science., 7(22), 3757–3761. https://doi.org/10.3889/oamjms.2019.497

    Article  Google Scholar 

  • Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharmaceutica, 57(3), 315–332. https://doi.org/10.2478/v10007-007-0025-5

    Article  CAS  PubMed  Google Scholar 

  • Badawy, M. E., Saad, A. F. S., Tayeb, E. S. H., Mohammed, S. A., & Abd-Elnabi, A. D. (2017). Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: modeling and influence of the oil phase, surfactant and sonication. Journal of Environmental Science and Health Part B, 52(12), 896–911. https://doi.org/10.1080/03601234.2017.1362941

    Article  CAS  Google Scholar 

  • Badawy, M. E., Saad, A. F. S., Tayeb, E. S. H., Mohammed, S. A., & Abd-Elnabi, A. D. (2019). Development and characterization of nanoemulsions of some insecticides by high energy technique for targeting delivery. Journal of Agricultural Research, 57(1), 15–23.

    Google Scholar 

  • Balaure, P.C., Gudovan, D., & Gudovan, I. (2017). Nanopesticides: a new paradigm in crop protection. In New Pesticides and Soil Sensors, (pp. 129–192). Academic Press. https://doi.org/10.1016/b978-0-12-804299-1.00005-9

  • Bhattacharyya, A., Bhaumik, A., Rani, P. U., Mandal, S., & Epidi, T. T. (2010). Nano-particles - A recent approach to insect pest control. African Journal of Biotechnology, 9(24), 3489–3493.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brogdon, W. G., & Barber, A. M. (1987). Microplate assay of acetylcholinesterase inhibition kinetics in single-mosquito homogenates. Pesticide Biochemistry and Physiology, 29(3), 252–259. https://doi.org/10.1016/0048-3575(87)90155-6

    Article  CAS  Google Scholar 

  • Brogdon, W. G., & Barber, A. M. (1990). Microplate assay of glutathione S-transferase activity for resistance detection in single-mosquito triturates. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 96(2), 339–342. https://doi.org/10.1016/0305-0491(90)90385-7

  • Brogdon, W. G., & Dickinson, C. M. (1983). A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Analytical Biochemistry, 131(2), 499–503. https://doi.org/10.1016/0003-2697(83)90204-x

    Article  CAS  PubMed  Google Scholar 

  • Bruxel, F., Laux, M., Wild, L. B., Fraga, M., Koester, L. S., & Teixeira, H. F. (2012). Nanoemulsions as parenteral drug delivery systems. Quimica Nova, 35, 1827–1840.

    Article  CAS  Google Scholar 

  • Đorđević, S. M., Cekić, N. D., Savić, M. M., Isailović, T. M., Ranđelović, D. V., Marković, B. D., Savić, S. R., Stamenić, T. T., Daniels, R., & Savić, S. D. (2015). Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. International Journal of Pharmaceutics, 493(1–2), 40–54. https://doi.org/10.1016/j.ijpharm.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Elnabi, A., Desoky, A., Badawy, M. E., Saad, A. F. S., & Mohamed, S. A. (2021). Efficacy of some pyrethroid nanoemulsions against cotton leafworm Spodoptera littoralis (Boisd.): toxicity, biochemical and molecular docking studies. Egyptian Journal of Chemistry, 64(2), 1047–1055. https://doi.org/10.21608/ejchem.2020.45275.2946

  • Feng, J., Shi, Y., Yu, Q., Sun, C., & Yang, G. (2016). Effect of emulsifying process on stability of pesticide nanoemulsions. Colloids Surfaces a: Physicochemical and Engineering Aspect, 497, 286–292. https://doi.org/10.1016/j.colsurfa.2016.03.024

    Article  CAS  Google Scholar 

  • Feng, J., Zhang, Q., Liu, Q. I., Zhu, Z., McClements, D. J., & Jafari, S. M. (2018). Application of nanoemulsions in formulation of pesticides. In Nanoemulsions, (pp. 379–413). Academic Press. https://doi.org/10.1016/b978-0-12-811838-2.00012-6

  • Finney, D. J. (1971). Statistical logic in the monitoring of reactions to therapeutic drugs. Methods of Information in Medicine, 10(04), 237–245. https://doi.org/10.1055/s-0038-1636052

    Article  CAS  PubMed  Google Scholar 

  • Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G., Ga’al, H., & Jianchu, M. (2018). Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 558–567. https://doi.org/10.1080/21691401.2017.1329739

  • Ga’al, H., Yang, G., Fouad, H., Guo, M., & Mo, J. (2021). Mannosylerythritol lipids mediated biosynthesis of silver nanoparticles: an eco-friendly and operative approach against chikungunya vector Aedes albopictus. Journal of Cluster Science, 32(1), 17–25. https://doi.org/10.1007/s10876-019-01751-0

  • Ghosh, V., Saranya, S., Mukherjee, A., & Chandrasekaran, N. (2013). Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. Journal of Nanoscience and Nanotechnology, 13(1), 114–122. https://doi.org/10.1166/jnn.2013.6701

    Article  CAS  PubMed  Google Scholar 

  • Gupta, K. K., Shazad, M., & Kumar, S. (2019). Relevance of prolonged first mating in reproductive bioactivities of Dysdercus koenigii (Fabricius, 1775) (Heteroptera: Pyrrhocoridae). Polish Journal of Entomology, 88(1), 63–77. https://doi.org/10.2478/pjen-2019-0005

    Article  Google Scholar 

  • Gurpreet, K., & Singh, S. K. (2018). Review of nanoemulsion formulation and characterization technique. Indian Journal of Pharmaceutical Science, 80(5), 781–789. https://doi.org/10.4172/pharmaceutical-sciences.1000422

    Article  CAS  Google Scholar 

  • Karar, H., Bashir, M. A., Haider, M., Haider, N., Hassan, M., Hashem, M., & Alamri, S. (2021). Ecological impact on development of hemipterous bug (Dysdercus koenigii) (Hemiptera: Pyrrhocoridae) and boll rot disease of cotton (Gossypium hirsutum) grown in the diversified field. Saudi Journal of Biological Sciences, 28(7), 3957–3964. https://doi.org/10.1016/j.sjbs.2021.03.066

    Article  Google Scholar 

  • Karar, H., Bashir, M. A., Khan, K. A., Ghramh, H. A., Atta, S., Ansari, M. J., Ahmad, Z., & Khan, F. R. (2020). The impact of adjacent habitats on population dynamics of red cotton bugs and lint quality. PLoS ONE, 15(12), e0242787. https://doi.org/10.1371/journal.pone.0242787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehrer, J.P., Robertson, J.D., & Smith, C.V. (2010). “Free radicals and reactive oxygen species” (pp. 277–307). https://doi.org/10.1016/b978-0-08-046884-6.00114-7

  • Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science &. Emerging Technologies, 9(2), 170–175. https://doi.org/10.1016/j.ifset.2007.07.005

  • Kona, M. P., Kamaraju, R., Donnelly, M. J., Bhatt, R. M., Nanda, N., Chourasia, M. K., Swain, D. K., Suman, S., Uragayala, S., Kleinschmidt, I., & Pandey, V. (2018). Characterization and monitoring of deltamethrin-resistance in Anopheles culicifacies in the presence of a long-lasting insecticide-treated net intervention. Malaria Journal, 17(1), 1–12. https://doi.org/10.1186/s12936-018-2557-1

    Article  CAS  Google Scholar 

  • Koroleva, M. Y., & Yurtov, E. V. (2012). Nanoemulsions: the properties, methods of preparation and promising applications. Russian Chemical Reviews, 81(1), 21–43. https://doi.org/10.1070/rc2012v081n01abeh004219

    Article  CAS  Google Scholar 

  • Lanbiliu, P., Samal, R.R., Panmei, K., & Kumar, S. (2020). Assessment of toxicity and growth regulatory effects of beta-cyfluthrin against red cotton bug, Dysdercus koenigii (Fabr.) (Hemiptera: Pyrrhocoridae): an emerging cotton pest. In International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), (pp. 148–153). Atlantis Press. https://doi.org/10.2991/absr.k.200513.026

  • Mishra, P., Balaji, A. P. B., Dhal, P. K., Kumar, R. S., Magdassi, S., Margulis, K., Tyagi, B. K., Mukherjee, A., & Chandrasekaran, N. (2017). Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bulletin of Entomological Research, 107(5), 676–688. https://doi.org/10.1017/s0007485317000165

    Article  CAS  PubMed  Google Scholar 

  • Mossa, A.T.H., Afia, S.I., Mohafrash, S.M., & Abou-Awad, B.A. (2018). Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research, 25(11), 10526–10537. https://doi.org/10.1007/s11356-017-0752-1

  • Panini, M., Manicardi, G. C., Moores, G. D., & Mazzoni, E. (2016). An overview of the main pathways of metabolic resistance in insects. Invertebrates Survival of Journal, 13(1), 326–335.

    Google Scholar 

  • Persson, K. H., Blute, I. A., Mira, I. C., & Gustafsson, J. (2014). Creation of well-defined particle-stabilized oil-in-water nanoemulsions. Colloids Surfaces a: Physicochemical and Engineering Aspects, 459, 48–57. https://doi.org/10.1016/j.colsurfa.2014.06.034

    Article  CAS  Google Scholar 

  • Qin, H., Zhang, H., Li, L., Zhou, X., Li, J., & Kan, C. (2017). Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Advances, 7(83), 52684–52693. https://doi.org/10.1039/c7ra10640h

    Article  CAS  Google Scholar 

  • Sadurní, N., Solans, C., Azemar, N., & García-Celma, M. J. (2005). Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. European Journal of Pharmaceutical Sciences, 26(5), 438–445. https://doi.org/10.1016/j.ejps.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  • Saeed, R., & Abbas, N. (2020). Realized heritability, inheritance and cross-resistance patterns in imidacloprid-resistant strain of Dysdercus koenigii (Fabricius) (Hemiptera: Pyrrhocoridae). Pest Management Science, 76(8), 2645–2652. https://doi.org/10.1002/ps.5806

    Article  CAS  PubMed  Google Scholar 

  • Sahayaraj, K., & Fernandez, S.M. (2017). Life traits and predatory potential of Antilochus coqueberti (Fab.) (Heteroptera: Pyrrhocoridae) against Dysdercus koenigii Fab. Journal of Asia-Pacific Entomology, 20(4), 1314–1320. https://doi.org/10.1016/j.aspen.2017.09.014

  • Singh, K. K., & Vingkar, S. K. (2008). Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. International Journal of Pharmaceutics, 347(1–2), 136–143. https://doi.org/10.1016/j.ijpharm.2007.06.035

    Article  CAS  PubMed  Google Scholar 

  • Sobhani, H., Tarighi, P., Ostad, S. N., Shafaati, A., Nafissi-Varcheh, N., & Aboofazeli, R. (2015). Formulation, development and toxicity assessment of triacetin-mediated nanoemulsions as novel delivery systems for rapamycin. Iranian Journal of Pharmaceutical Research: IJPR, 14(Suppl), 3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., Liu, X., Jiang, J., Qian, Y., Zhang, N., & Wu, Q. (2009). Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surface a: Physicochemical and Engineering Aspects, 350(1–3), 57–62. https://doi.org/10.1016/j.colsurfa.2009.08.034

    Article  CAS  Google Scholar 

  • Taktak, N. E., Badawy, M. E., Awad, O. M., Abou El-Ela, N. E., & Abdallah, S. M. (2021). Enhanced mosquitocidal efficacy of pyrethroid insecticides by nanometric emulsion preparation towards Culex pipiens larvae with biochemical and molecular docking studies. Journal of the Egyptian Public Health Association, 96(1), 1–19. https://doi.org/10.1186/s42506-021-00082-1

    Article  Google Scholar 

  • Talebi, K., Hosseininaveh, V., & Ghadamyari, M. (2011). Ecological impacts of pesticides in agricultural ecosystem. Pesticides in the Modern World–Risks and Benefits”(M. Stoytcheva, ed.). In Tech Open Access Publisher, Rijeka, Croatia, (pp.143–168). https://doi.org/10.5772/22919

  • Wang, L., Li, X., Zhang, G., Dong, J., & Eastoe, J. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314(1), 230–235. https://doi.org/10.1016/j.jcis.2007.04.079

    Article  CAS  PubMed  Google Scholar 

  • William, G. B., & Janet, C. (1997). Heme peroxidase activity measured in single mosquitoes identifies individuals expressing the elevated oxidase mechanism for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233–237.

    Google Scholar 

  • World Health Organization (WHO) (1998). Techniques to detect insecticide resistance mechanisms (field and laboratory manual). Geneva: WHO. https://apps.who.int/iris/handle/10665/83780 

  • Zhao, Q., Ho, C. T., & Huang, Q. (2013). Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (o/w) nanoemulsions. Journal of Agricultural and Food Chemistry, 61, 7462–7469. https://doi.org/10.1021/jf4017527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Council of Scientific and Industrial Research, New Delhi, India (Award No. 08/529(0011)/2018-EMR-I) for providing financial assistance to carry out the experiment. The authors extend thanks to the Principal, Acharya Narendra Dev College for providing laboratory and culture facilities to conduct the experiment.

Funding

This research was supported by a contingent grant from Council of Scientific and Industrial Research, New Delhi, India (Award No. 08/529(0011)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

PL conceived the idea. PL, RRS, and KP conducted the experiments and wrote the manuscript. SK designed and guided the experiments. PL analysed the results and SK helped in the analysis. All the authors were involved in the finalization of the manuscript.

Corresponding authors

Correspondence to P. Lanbiliu or Sarita Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not Applicable.

Consent of participation

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanbiliu, P., Samal, R.R., Panmei, K. et al. Relative survival and detoxification enzyme activity in Dysdercus koenigii (Hemiptera: Pyrrhocoridae) exposed to β-cyfluthrin alone and its nanometric emulsion. Phytoparasitica 52, 38 (2024). https://doi.org/10.1007/s12600-024-01156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12600-024-01156-4

Keywords

Navigation