Skip to main content
Log in

The effect of different oviposition and preadult development temperatures on the biological characteristics of four Trichogramma spp. parasitoids (Hymenoptera: Trichogrammatidae) species

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Trichogramma parasitoids are effective biocontrol agents and a reliable component of integrated strategies against lepidopterous pests. The success of these parasitoids in pest management relies not only on their ability to parasitize their hosts but also on their adaptation to the climatic conditions of the release area, particularly temperature. The expression of life history traits of Trichogramma spp. can vary significantly with temperature, depending on the species or strains being tested. Trichogramma cacoeciae (Marchal), T. euproctidis (Girault), T. minutum (Riley), and T. brassicae (Bezdenko) (Hymenoptera: Trichogrammatidae) are currently used in biocontrol programs against important lepidopteran pests. We aimed to assess the temperature sensitivity of these parasitoids during oviposition and preadult development, and to identify the most tolerant species to high temperatures conditions commonly encountered in Mediterranean Basin countries during the growing seasons. The biological characteristics of the four species were determined at seven temperature regimes expressed as temperatures during oviposition and preadult development (25/25, 25/30, 25/35, 25/40, 30/30, 35/35 and 40/40 °C), using Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Trichogramma cacoeciae showed the highest level of parasitism at 30/30 °C, while the other species exhibited the highest levels at 25/25 °C and 25/30 °C. All Trichogramma species were able to develop and survive from 25 °C to 35 °C, but not at 40 °C. Temperature significantly affected the longevity and fecundity of female progeny, with both decreasing when the temperature increased from 25 °C to 35 °C. When exposed to 35/35 °C, T. cacoeciae demonstrated the most optimal performance in terms of parasitization efficiency, developmental capacity, progeny longevity, and fecundity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials are available on the reasonable request.

References

  • Abazaid, M. A. A., Shalaby, F. F., Hafez, A. A. & Ewaise, M. A. (2021). Survey and abundance of major insect pests on pomegranate fruits in Egypt. V International conference on biotechnology applications in agriculture (ICBAA), Bio- Pesticides and Biological Control (601–612). Benha University, 8 April 2021.

  • Altoé, T. S., Pratissoli, D., Carvalho, J. R., Gonçalves, H. J., Pereira, J. P., Oliveira, R. C., & Bueno, A. F. (2012). Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) parasitism of Trichoplusiani (Lepidoptera: Noctuidae) eggs under different temperatures. Annals of the Entomological Society of America, 105(1), 82–89.

    Article  Google Scholar 

  • Amalin, D. M., Pena, J. E., & Duncan, R. (2005). Effects of host age, female parasitoid age, and host plant on parasitism of Ceratogramma etiennei (Hymenoptera: Trichogrammatidae). Florida Entomology, 88, 77–81.

    Article  Google Scholar 

  • Andrade, G. S., Pratissoli, D., Dalvi, L. P., Desneux, N., & Gonçalves, H. J. (2011). Performance of four Trichogramma species (Hymenoptera: Trichogrammatidae) as biocontrol agents of Heliothis virescens (Lepidoptera: Noctuidae) under various temperature regimes. Journal of Pest Science, 84(3), 313–320.

    Article  Google Scholar 

  • Atashi, N., Shishehbor, P., Seraj, A. A., Rasekh, A., Hemmati, S. A. & Riddick, E. W. (2021). Effects of Helicoverpa armigera egg age on development, reproduction, and life table parameters of Trichogramma euproctidis. Insectes, 12(7), 569. https://doi.org/10.3390/insects12070569

  • Atashi, N., Shishehbor, P., Seraj, A. A., Rasekh, A., Hemmati, S. A. & Ugine, T. A. (2023). The effect of temperature on the bionomics of Trichogramma euproctidis (Hym.: Trichogrammatidae) parasitizing the tomato fruitworm, Helicoverpa armigera (Lep.: Noctuidae). Plant Protection (Scientific Journal of Agriculture), 46(1), Spring. https://doi.org/10.22055/ppr.2023.42910.1677

  • Aubry, O. (2008). Lutte attracticide et lâchers inondatifs de trichogrammes contre le carpocapse de la pomme, Cydia pomonella (Lepidoptera : Tortricidae). Université du Québec à Montréal, 114 pp. https://archipel.uqam.ca/1052/. Accessed 1 Nov 2014

  • Ayvaz, A., Karasu, E., Karabörklü, S., & Aydln, ŞT. (2008). Effects of cold storage, rearing temperature, parasitoid age and irradiation on the performance of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). Journal of Stored Products Research, 44, 232–244.

    Article  Google Scholar 

  • Bari, M. N., Jahan, M., & Islam, K. S. (2015). Effects of temperature on the life table parameters of Trichogramma zahiri (Hymenoptera: Trichogrammatidae), an egg parasitoid of Dicladispa armigera (Chrysomelidae: Coleoptera). Environmental Entomology, 44(2), 368–378.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, W. R., & Stern, V. M. (1966). Effect of temperature on the production of males and sexual mosaics in a uniparental race of Trichogramma semifumatum (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America, 59, 823–834.

    Article  Google Scholar 

  • Bueno, R. C. O. F., Parra, J. R. P., & Bueno, A. F. (2012). Trichogramma pretiosum parasitism of Pseudoplusia includens and Anticarsia gemmatalis eggs at different temperatures. Biological Control, 60(2), 154–162. https://doi.org/10.1016/j.biocontrol.2011.11.005

    Article  Google Scholar 

  • Carvalho, F.P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6, 48–60. https://doi.org/10.1002/fes3.108

  • Caselli, A. & Petacchi, R. (2021). Climate change and major pests of mediterranean olive orchards: are we ready to face the global heating? Insects, 12, 802. https://doi.org/10.3390/insects12090802

  • Cerutti, F., Bigler, F., Eden, G., & Bosshart, S. (1992). Optimal larval density and quality control aspects in mass rearing of the Mediteranean flour moth, Ephestia kuehniella Zell. (Lep., phycitidae). Journal of Applied Entomology, 114, 353–361.

    Article  Google Scholar 

  • Cherif, A., & Lebdi-Grissa, K. (2013). Trichogramma cacoeciae as a biological control agent of the tomato pinworm Tuta absoluta in Northeastern Tunisia. Entomologia Hellenica, 22, 35–42.

    Article  Google Scholar 

  • Cherif, A., & Verheggen, F. (2019). A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnology, Agronomy, Society and Environment, 23(4), 270–278.

    Article  CAS  Google Scholar 

  • Cônsoli, F. L., & Parra, J. R. P. (1995). Effects of constant and alternating temperatures on Trichogramma galloi Zucchi (Hym., Trichogrammatidae) biology. Journal of Applied Entomology, 119, 415–418.

    Article  Google Scholar 

  • Coscolla, R. (1997). La pololla dela racimo de la vid (Lobesia botrana Den. Y Schiff.). Sèrie tècnica. Generalitat Valenciana, Conselleria de agricultura, Pesca y Alimentación, Valencia, Spain, p 613.

  • Dhouibi, M. H., Hermi, H., Soudani, D., & Thlibi, H. (2016). Biocontrol of the carob moth Ectomyelois ceratoniae in pomegranate and citrus orchards in Tunisia. International Journal of Agriculture Innovations and Research, 4, 849–856.

    Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.

    Article  ADS  CAS  PubMed  Google Scholar 

  • EPPO. (2002). PM 6/3(2). Safe use of biological control. List of biological control agents widely used in the EPPO region. Bulletin OEPP/EPPO Bulletin, 32, 447–461.

    Article  Google Scholar 

  • Feder, M. E., Blair, N. T., & Figueras, H. (1997). Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae. Functional Ecology, 11, 90–100.

    Article  Google Scholar 

  • Foerster, M. R., Marchioro, C. A., & Foerster, L. A. (2014). Temperature-dependent parasitism, survival, and longevity of five species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) associated with Anticarsia gemmatalis hübner (Lepidoptera: Noctuidae). Neotropical Entomology, 43, 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Funes, I., Aranda, X., Biel, C., Carbó, J., & Camps, F. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164, 19–27. https://doi.org/10.1016/j.agwat.2015.06.013

    Article  Google Scholar 

  • Garcia, P., Wajnberg, E., Oliveira, L., & Tavares, J. (2001). Is the parasitization capacity of Trichogramma cordubensis infuenced by the age females? Entomologia Experimentalis Et Applicata, 98, 219–224.

    Article  Google Scholar 

  • Giorgini, M., Guerrieri, E., Cascone, P., & Gontijo, L. (2018). Current strategies and future outlook for managing the Neotropical tomato pest Tuta absoluta (Meyrick) in the Mediterranean Basin. Neotropical Entomology, 48, 1–17.

    Article  PubMed  Google Scholar 

  • Greenberg, S. M., Nordlund, D. A. & King, E. G. (1996). Mass production of Trichogramma spp.: Experience in the former Soviet Union, China, the United States and western Europe. Biocontrol News Information, 17(3), 51–60.

  • Gugliuzzo, A., Mazzeo, G., Mansour, R., & Giovanna, T. G. (2019). Carob pests in the Mediterranean region: Bio-ecology, natural enemies and management options. Phytoparasitica, 47, 605–628.

    Article  Google Scholar 

  • Gurr, G. M., & Nicol, H. I. (2000). Effect of food on longevity of adults of Trichogramma carverae Oatman and Pinto and Trichogramma brassicae bezdenko (Hymenoptera: Trichogrammatidae). Australian Journal of Entomology, 39, 185–187.

    Article  Google Scholar 

  • Harrison, W. W., King, E. G., & Ouzts, J. D. (1985). Development of Trichogramma exiguum and T. pretiosum at five temperature regimes. Environmental Entomology, 14, 118–121.

    Article  Google Scholar 

  • Hassan, S. A. (1994). Strategies to select Trichogramma species for use in biological control. In E. Wajnberg & S. A. Hassan (Eds.), Biological control with egg parasitoids (pp. 55–71). CAB International.

    Google Scholar 

  • Hegazi, E. M., Herz, A., Hassan, S., Khafagi, W., Agamy, E., Zaitun, A., Abdel-Rahman, S. M., El-Said, S., & Khamis, N. (2007). Efficiency of endemic Trichgramma species of olive farms to control the olive (Prays oleae) and jasmine (Palpita unionalis) moths in Egypt. Journal of Insect Science, 7(16), 8–8.

    Google Scholar 

  • Herz, A., Hassan, S. A., Hegazi, E., Khafagi ,W. E., Nasr, F. N., Youssef, A. A., Agamy, E., Jardak, T., Ksantini, M., Mazomenos, B. E., Konstantopoulou, M. A., Torres, L., Gonçalves, F., Bento, A. & Pereira, J. A. (2005). Towards sustainable control of lepidopterous pests in olive cultivation. Gesunde Pflanzen, 58, 117–128. https://doi.org/10.1007/s10343-005-0076-9

  • Herz, A., Hassan, S. A., Hegazi, E., Khafagi, W. E., Nasr, F. N., Youssef, A. A., Agamy, E., Blibech, I., Ksentini, I., Ksantini, M., Jardak, T., Bento, A., Pereira, J. A., Torres, L., Souliotis, C., Moschos, T., & Milonas, P. (2007). Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) in olive groves of the Mediterranean region. Biological Control, 40, 48–56.

    Article  Google Scholar 

  • Hommay, G., Gertz, C., Kienlen, J. C., Pizzol, J., & Chavigny, P. (2002). Comparison between the control efficacy of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) and two Trichogramma cacoeciae. Biocontrol Science and Technology, 12(5), 569–581.

    Article  Google Scholar 

  • Hussain, A., Razaq, M., Saeed, R., Aslam, M., Rafiq, M., & Zaka, S. M. (2013). Effect of different temperatures on life history of Trichogramma chilonis (Ishii) in the laboratory conditions. Pakistan Entomology, 35(2), 123–127.

    Google Scholar 

  • Kalyebi, A., Sithanantham, S., Overholt, W. A., Hassan, S. A., & Mueke, J. M. (2005). Parasitism, longevity and progeny production of six indigenous Kenyan trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) at different temperature and relative humidity regimes. Biocontrol Science and Technology, 15(3), 255–270.

    Article  Google Scholar 

  • Karuppuchamy, P. & Venugopal, S. (2016). Integrated pest management. Ecofriendly Pest Management for Food Security, 651–684. https://doi.org/10.1016/B978-0-12-803265-7.00021

  • Khoualdia, O., R’houma, A. & Marro, J. P. (1996).Utilisation de Trichogramma cacoeciae Marchal (Hymenoptera, Trichogrammatidae) contre la pyrale des dattes. Annales de l’INRAT, 69, 197-205.

  • Kocsis, M., & Hufnagel, L. (2011). Impacts of climate change on lepidoptera species and communities. Applied Ecology and Environmental Research, 9(1), 43–72.

    Article  Google Scholar 

  • Ksentini, I., Monje, J. C., Jardak, T., & Zeghal, N. (2010). Naturally occurring egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) in a pomegranate orchard in Tunisia. Entomological Science, 13(1), 99–106.

    Article  Google Scholar 

  • Ksentini, I., Herz, A., Ksantini, M., Sabelis, M. W., & Hassan, S. A. (2011). Temperature and strain effects on reproduction and survival of Trichogramma oleae and Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Biocontrol Science and Technology, 21(8), 903–916.

    Article  Google Scholar 

  • Kumar, P., Sekhar, J. C. & Kaur, J. (2013). Trichogrammatids: Integration with other methods of pest control. In Sithanantham, S., Ballal, C. R., Jalali, S. K. and Bakthavatsalam, N. (Eds.), Biological control of insect pests using egg parasitoids (pp. 191–208). Springer India.

  • Lauge, G. (1985). Sex determination: Genetic and epigenetic factors. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry and pharmacology (Vol. I, pp. 295–318). Pergamon Press.

    Google Scholar 

  • Lebdi-Grissa, K. & Ben Ayed, N. (2005). Lutte biologique contre Ectomyelois ceratoniae sur grenadier par des lâchers de Trichogramma cacoeciae. 7ème Conférence Internationale sur les Ravageurs en Agriculture, Montpellier, France, p 7.

  • Leff, B., Ramankutty, N. & Foley, J. A. (2004). Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 18, GB1009. https://doi.org/10.1029/2003GB002108

  • Maceda, A., Hohmann, C. L., & Dos Santos, H. R. (2003). Temperature effects of Trichogramma pretiosum Riley and Trichogrammatoidea annulata De Santis. Brazilian Archives of Biology Andd Technology, 46(1), 27–32.

    Article  Google Scholar 

  • Mashal, S., Agamy, E., Abou-bakr, H., Abd El-Wahab, T. E., & El Behery, H. (2019). Effect of honeybee products, as food supplements, on the biological activities of three Trichogramma species (Hymenoptera: Trichogrammatidae). Egyptian Journal of Biological Pest Control, 29, 46. https://doi.org/10.1186/s41938-019-0149-1

    Article  Google Scholar 

  • Matthews, G. A. (2022). The need for Integrated Pest Management (IPM). Outlooks on Pest Management, 33(5), 174–176.

    Article  Google Scholar 

  • McDougall, S. J., & Mills, N. J. (1997). The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomologia Experimentalis Et Applicata, 83, 195–203.

    Article  Google Scholar 

  • Melo, R. L., Pratissoli, D., Polanczyk, R. A., Melo, D. F., Barros, R. & Milanez, A. M. (2007). Biology and thermal requirements of Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogrammatidae) parasitizing eggs of Diaphania hyalinata L. (Lepidoptera: Pyralidae). Neotropical Entomology, 36(3), 431–435.

  • Melo, M. J. L. A. L. (2011). Dynamics study and temperature effect on biological traits of two Trichogramma species (Hymenoptera, Trichogrammatidae) of S. Miguel Island. Master’s Thesis, Universidade dos Açores, Açores, Portugal.

  • Mills, N. J. (2010). Egg parasitoids in biological control and integrated pest management. In F. L. Cônsoli, J. P. R. Parra, & R. A. Zucchi (Eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp. 389–411). Springer.

    Google Scholar 

  • Moezipour, M., Kafil, M., & Allahyari, H. (2008). Functional response of Trichogramma brassicae at different temperatures and relative humidities. Bulletin of Insectology, 62(2), 245–250.

    Google Scholar 

  • Mohammad, J. K., Al-Jassany, R. F., & Ali, A. S. A. (2015). Influence of temperature on some biological characteristics of Trichogramma evanescens (Westwood) (Hymenoptera: Trichogrammatidae) on the egg of lesser date moth Batrachedra amydraula Meyrick. Journal of Biological Control, 29(3), 125–130.

    Article  Google Scholar 

  • Moiroux, J., Brodeur, J., & Boivin, G. (2014). Sex ratio variations with temperature in an egg parasitoid: Behavioural adjustment and physiological constraint. Animal Behaviour, 91, 61–66.

    Article  Google Scholar 

  • Mols, P. J. M. & Boers, J. M. (2001). Comparison of a Canadian and a Dutch strain of the parasitoid Aphelinus mali (Hald) (Hym., Aphelinidae) for control of woolly apple aphid Eriosoma lanigerum (Haussmann) (Hom., Aphididae) in the Netherlands: a simulation approach. Journal of Applied Entomology, 125(5), 255–262.

  • Mrabet, R., Savé, R., Toreti, A., Caiola, N., Chentouf, M., Llasat, M. C., Mohamed, A. A. A., Santeramo, F. G., Sanz-Cobena, A., Tsikliras, A. (2020). Food. In Cramer, W., Guiot, J., Marini, K. (Eds.), Climate and environmental change in the Mediterranean Basin – current situation and risks for the future. First Mediterranean Assessment Report (pp. 26). Union for the Mediterranean, Plan Bleu, UNEP/MAP.

  • Nadeem, N., Ashfaq, M., Hamed, M., Ahmed, S., & Nadeem, M. K. (2009). Comparative rearing of Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae) at different temperature conditions. Pakistan Entomologist, 31(1), 33–36.

    Google Scholar 

  • Negahban, M., Sedaratian-Jahromi, A., Ghane-Jahromi, M., Haghani, M. & Zalucki, M. P. (2021). Response of Trichogramma brassicae (Hym.: Trichogrammatidae) to temperature: Utilizing thermodynamic models to describe curvilinear development. Crop Protection, 143, 105562. https://doi.org/10.1016/j.cropro.2021.105562

  • Oliveira, C. M., Oliveira, J. V., Barbosa, D. R. S., Breda, M. O., França, S. M., & Duarte, B. L. R. (2017). Biological parameters and thermal requirements of Trichogramma pretiosum for the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatoes. Crop Protection, 99, 39–44. https://doi.org/10.1016/j.cropro.2017.04.005

    Article  Google Scholar 

  • Özder, N., & Kara, G. (2010). Comparative biology and life table of Trichogramma cacoeciae, T. brassicae and T. evanescens (Hymenoptera: Trichogrammatidae) with Ephestia kuehniella and Cadra cautella (Lepidoptera: Pyralidae) as hosts at three constant temperatures. Biocontrol Science and Technology, 20, 245–255.

    Article  Google Scholar 

  • Pak, G. A., & Oatman, E. R. (1982). Comparative life table, behavior and competition studies on Trichogramma brevicapillum and T. pretiosum. Entomologia Experimentalis Et Applicata, 32, 68–79.

    Article  Google Scholar 

  • Parra, J. R. P., Zucchi, R. A., Silveira Neto, S. & Haddad, M.L. (1991). Biology and thermal requirements of Trichogramma galloi Zucchi and T. distinctum Zucchi, on two factitious hosts. Colloques de l´INRA, 56, 81–84.

  • Pavan, F., Cargnus, E., Bigot, G., & Zandigiacomo, P. (2014). Residual activity of insecticides applied against Lobesia botrana and its influence on resistance management strategies. Bulletin of Insectology, 67(2), 273–280.

    Google Scholar 

  • Pavlik, J. (1993). The size of the female and quality assessment of mass-reared Trichogramma spp. Entomologia Experimentalis Et Applicata, 66, 171–177.

    Article  Google Scholar 

  • Pease, C. E., López-Olguín, J. F., Pérez-Moreno, I., & Marco-Mancebón, V. (2016). Effects of kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and its compatibility with the natural enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 109(1), 1–6. https://doi.org/10.1093/jee/tov400

    Article  CAS  Google Scholar 

  • Pereira, F. F., Barros, R., Pratissoli, D., Pereira, C. L. T., Vianna, U. R. & Zanuncio, J. C. (2007). Capacidade de parasitismo de Trichogramma exiguum Pinto & Platner, 1978 (Hymenoptera: Trichogrammatidae) emovos de Plutella xylostella (L., 1758) (Lepidoptera: Plutellidae) em diferentes temperaturas. Ciência Rural, 37(2), 297–303.

  • Pino, M., Gallego, J. R., Hernández Suárez, E. & Cabello, T. (2020). Effect of temperature on life history and parasitization behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects, 11(8), 482. https://doi.org/10.3390/insects11080482

  • Pintureau, B., Petinon, S., & Nardon, C. (1999). Possible function of substances excreted by Trichogramma and darkening their host. Bulletin De La Société Zoologique De France, 124, 261–269.

    Google Scholar 

  • Pintureau, B. (2008). Les espèces européennes de Trichogrammes. InLibroVeritas, Cergy-Pontoise (p. 96).

  • Pizzol, J. (2004). Etudes bioécologiques de Trichogramma cacoeciae Marchal, parasitoïde oophage de l’eudémis de la vigne, en vue de son utilisation en lutte biologique. Diplome d’Ingénieur Diplomé par l’Etat, Montpellier, option Agriculture ENSAM.

  • Pizzol, J., Pintureau, B., Khoualdia, O., & Desneux, N. (2010). Temperature-dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Pest Science, 83, 447–452.

    Article  Google Scholar 

  • Pizzol, J., Desneux, N., Wajnberg, E., & Thiéry, D. (2012). Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. Journal of Pest Science, 85, 489–496.

    Article  Google Scholar 

  • Ponti, L., Gutierrez, A. P., & Iannetta, M. (2016). Climate change and crop-pest dynamics in the Mediterranean Basin. ENEA Technical Report, 27(2016), p 18. https://doi.org/10.5281/zenodo.151161

  • Pratissoli, D., & Parra, J. R. P. (2000). Desenvolvimento e exigências térmicas de Trichogramma pretiosum Riley, criado em duas traças do tomateiro. Pesquisa Agropecuaria Brasileira, 35, 1281–1288.

    Article  Google Scholar 

  • Pratissoli, D., & Parra, J. R. P. (2001). Seleção de linhagens de Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) Para o controle das traças Tuta absoluta (Meyrick) e Phthorimaea operculella (Zeller) (Lep., Gelechiidae). Neotropical Entomology, 30, 277–282.

    Article  Google Scholar 

  • Querino, R. B., Zucchi, R. A. & Pinto, J. D. (2010). Systematics of the Trichogrammatidae (Hym.: Chalcidoidea) with a focus on the genera attacking Lepidoptera. In Cônsoli, F. L., Parra, J. R. P., Zucchi, R. A. (Eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp: 191–219). Springer. https://doi.org/10.1007/978-1-4020-9110-0_7

  • Rahouma, A. K. (2018). The most economic lepidopterous pests attacking vegetable crops in Egypt. Journal of Plant Protection and Pathology, 7, 417–421.

    Article  Google Scholar 

  • Ram, P., Tshernyshev, W. B., Afonina, V. M., & Greenberg, S. M. (1995). Studies on the strains of Trichogramma evanescens weswood (Hym., Trichogrammatidae) collected from different hosts in northern Moldova. Journal of Applied Entomology, 119, 79–82.

    Article  Google Scholar 

  • Ramdani, M., Elkhiati, N., & Flower, R. J. (2009). Lakes of Africa: North of Sahara. In: G. E. Likens. (Ed.), pp. 544–554). Encyclopedia of inland waters. Academic Press.

  • Renou, M., Nagnan, P., Berthier, A., & Durier, C. (1992). Identification of compounds from the eggs of Ostrinia nubilalis and Mamestra brassicae having kairomone activity on Trichogramma brassicae. Entomologia Experimentalis Et Applicata, 63, 291–303.

    Article  CAS  Google Scholar 

  • Reznik, S. Y., & Vaghina, N. P. (2006). Temperature effects on induction of parasitization by females of Trichogramma principium (Hymenoptera, Trichogrammatidae). Entomology Review, 86(2), 133–138.

    Article  Google Scholar 

  • Reznik, S. Y. & Voinovich, N. D. (2015). The influence of temperature and photoperiod on the rate of development in Trichogramma principium Sug. et Sor. (Hymenoptera, Trichogrammatidae). Entomology Review, 95(3), 289–295.

  • Russo, J. & Voegelé, J. (1982). Influence de la temperature sur quatre espèces de trichogrammes (Hym.: Trichogrammatidae) parasites de la pyrale du mais, Ostrinia nubi1alis Hubn. (Lep: Pyralidae). Agronomie, 2(6), 509–516.

  • Samara, R., Monje, J. C., Zebitz, C. P. W., & Qubbaj, T. (2011). Comparative biology and life tables of Trichogramma aurosum on Cydia pomonella at constant temperatures. Phytoparasitica, 39, 109–119.

    Article  Google Scholar 

  • Schöller, M., & Hassan, S. A. (2001). Comparative biology and life tables of Trichogramma evanescens and T. cacoeciae with Ephestia elutella as host at four constant temperatures. Entomologia Experimentalis Et Applicata, 98, 35–40.

    Article  Google Scholar 

  • Scharf, I., Braf, H., Ifrach, N., Rosenstein, S., & Subach, A. (2015). The effects of temperature and diet during development, adulthood, and mating on reproduction in the red flour beetle. PLoS ONE, 10(9), e0136924. https://doi.org/10.1371/journal.pone.0136924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp, J.L. & Wang, K. (1998). Evaluation of commercially produced Trichogramma spp. (Hymenoptera: Trichogrammatidae) for control of tomato pinworm, Keiferia lycopersicella (Lepidoptera: Gelechiidae), on greenhouse tomatoes. Canadian Entomologist, 130(5), 721–731.

  • Shirazi, J. (2006). Effect of temperature and photoperiod on the biological characters of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Pakistan Journal of Biological Sciences., 9(5), 820–824.

    Article  Google Scholar 

  • Sigsgaard, L., Herz, A., Korsgaard, M. & Wührer, B. (2017). Mass release of Trichogramma evanescens and T. cacoeciae can reduce damage by the apple codling moth Cydia pomonella in organic orchards under pheromone disruption. Insects, 8, 41.

  • Smith, S. M. (1996). Biological control with Trichogramma: Advances, successes, and potential for their use. Annual Review of Entomology, 41, 375–406.

    Article  CAS  PubMed  Google Scholar 

  • Southwood, T. R. (1978). Ecological methods with particular reference to the study of insect population (2nd ed., pp. 1–6; 356–387). Chapman and Hall.

  • Stouthamer, R. (1993). The use of sexual wasps in biological control. Entomophaga, 38, 3–6.

    Article  Google Scholar 

  • Tabebordbar, F., Shishehbor, P., Ebrahimi, E., Polaszek, A., & Ugine, T. A. (2022a). Effect of different constant temperatures on life history and life table parameters of Trichogramma euproctidis (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 115(2), 474–481. https://doi.org/10.1093/jee/toac007

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabebordbar, F., Shishehbor, P., Ebrahimi, E., Polaszek, A., & Riddick, E. W. (2022b). Parasitoid age and host age interact to improve life history parameters and rearing of Trichogramma euproctidis. Biocontrol Science and Technology, 32(3), 267–280. https://doi.org/10.1080/09583157.2021.1990858

    Article  Google Scholar 

  • Tabone, E., Bardon, C., Desneux, N., & Wajnberg, E. (2010). Parasitism of different Trichogramma species and strains on Plutella xylostella L. on greenhouse cauliflower. Journal of Pest Science, 83, 251–256.

    Article  Google Scholar 

  • Uhl, B., Wölfing, M., & Bässler, C. (2022). Mediterranean moth diversity is sensitive to increasing temperatures and drought under climate change. Scientific Reports, 12(1), 14473. https://doi.org/10.1038/s41598-022-18770-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugurlu, K. S., Konus, M., & Buyuk, M. (2013). Determination of susceptibility levels of Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera) strains collected from different regions to some insecticides in Turkey. Journal of Entomological Research Society, 15, 37–45.

    Google Scholar 

  • Ukhurebor, K. E., Adetunji, C. O., Olugbemi, O.T., Nwankwo, W., Olayinka, A. S., Umezuruike, C., & Hefft, D. I. (2022). Precision agricultureWeather forecasting for future farming. In AI, (Edge and IoT-based Smart Agriculture., pp. 101–121). Academic Press. https://doi.org/10.1016/b978-0-12-823694-9.00008-6

  • Van Driesche, R. G. (1983). Meaning of “percent parasitism” in studies of insect parasitoids. Environmental Entomology, 12, 1611–1622.

    Article  Google Scholar 

  • Ventura Garcia, P., Wajnberg, E., Pizzol, J., & Oliveira, M. L. M. (2002). Diapause in the egg parasitoid Trichogramma cordubensis: Role of temperature. Journal of Insect Physiology, 48, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L. H., Hoffmann, A. A., & Thomson, L. J. (2015). Trichogramma parasitoids for control of Lepidopteran borers in Taiwan: Species, life-history traits and Wolbachia infections. Journal of Applied Entomology, 139(8), 609–618. https://doi.org/10.1111/jen.12202

    Article  Google Scholar 

  • Wu, L. H., Hoffmann, A. A., & Thomson, L. J. (2016). Potential impact of climate change on parasitism efficiency of egg parasitoids: A meta-analysis of Trichogramma under variable climate conditions. Agriculture Ecosystems and Environment, 231, 143–155.

    Article  Google Scholar 

  • Yu, D. S. K., Hagley, E. A. C., & Laing, J. E. (1984). Biology of Trichogramma minutum Riley collected from apples in southern Ontario. Environmental Entomology, 13, 1324–1329.

    Article  Google Scholar 

  • Yuan, X. H., Song, L. W., Zhang, J. J., Zang, L. S., Zhu, L., Ruan, C. C., & Sun, G. Z. (2012). Performance of four Chinese Trichogramma species as biocontrol agents of the rice striped stem borer, Chilo suppressalis, under various temperature and humidity regimes. Journal of Pest Science, 85, 497–504.

    Article  Google Scholar 

  • Zhou, J. C., Liu, Q. Q., Wang, Q. R., Ning, S. F., Che, W. N., & Don, H. (2020). Optimal clutch size for quality control of bisexual and wolbachia-infected thelytokous lines of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) mass reared on eggs of a substitutive host, Antheraea pernyi Guérin-méneville (Lepidoptera: Saturniidae). Pest Management Science, 76, 2635–2644. https://doi.org/10.1002/ps.5805

    Article  CAS  PubMed  Google Scholar 

  • Zouba, A., Chermiti, B., Kadri, K., & Fattouch, S. (2013a). Molecular characterization of Trichogramma cacoeciae strains (Hymenoptera: Trichogrammatidae) from the South West of Tunisia. Biomirror, 4(03), 1–6.

    Google Scholar 

  • Zouba, A., Chermiti, B., Chraiet, R., & Mahjoubi, K. (2013b). Effect of two indigenous Trichogramma species on the infestation level by tomato miner Tuta absoluta in tomato greenhouses in the south-west of Tunisia. Tunisian Journal of Plant Protection, 8, 87–106.

    Google Scholar 

  • Zouba, A., Zougari, S., Attia, S., Abbes, K., Grissa-Lebdi, K., Chermiti, B., & Ben Hmida, F. (2022). Field performance of the egg parasitoid Trichogramma cacoeciae Marchal (hymenoptera: Trichogrammatidae) following releases against Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae) in two types of oasis in Tunisia. Journal of Entomology and Zoology Studies, 10(2), 28–35.

    Article  Google Scholar 

  • Zougari, S., Attia, S., Zouba, A., & Lebdi-Grissa, K. (2020). Effectiveness of mass trapping and Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) releases against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in Tunisian oases. Biologia, 76(4), 1175. https://doi.org/10.2478/s11756-020-00628-2

    Article  CAS  Google Scholar 

  • Zuim, V., Rodrigues, H. S., Pratissoli, D., Torres, J. B., Fragoso, D. F. M., & Bueno, C. O. F. (2017). Age and density of eggs of Helicoverpa armigera influence on Trichogramma pretiosum parasitism. Acta Scientific, 39, 513–520.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are very grateful to Mrs Sonia Jandoubi for her technical assistance in the rearings. This work was supported by the National Agronomic Institute of Tunisia (INAT).

Author information

Authors and Affiliations

Authors

Contributions

SZ conducted experiment. AZ and SZ contributed equally to the writing of the contents present under different sub-headings of the manuscript. MM revised the manuscript. All generated data were statistically analyzed by SZ and critically checked and verified by KGL. NK help in data entry evaluation. KGL and FBH supervise. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Sahar Zougari.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anis Zouba and Sahar Zougari contributed equally to the work, and should be concidered as co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouba, A., Zougari, S., Mamay, M. et al. The effect of different oviposition and preadult development temperatures on the biological characteristics of four Trichogramma spp. parasitoids (Hymenoptera: Trichogrammatidae) species. Phytoparasitica 52, 19 (2024). https://doi.org/10.1007/s12600-024-01128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12600-024-01128-8

Keywords

Navigation