Skip to main content
Log in

Risk assessment of cyromazine resistance in a field population of Sesamia inferens (Walker): Cross-resistance, inheritance, and realized heritability

  • Research
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Developing an eco-friendly strategy for pest and resistance management is necessary to enhance agricultural production while protecting the environment. Cyromazine is among biorational insecticides posing very low mammalian toxicity. Resistance to a variety of insecticides has been documented in pink stem borer (PSB) from various regions, especially Pakistan, China and India. In effort to develop a strategy for cyromazine resistance management, trials were done to study toxicity, risk of cross-resistance and resistance development rate. A field population of PSB was collected from the field and exposed to cyromazine. After 20 generations of selection (G2-G21), the RR quickly increased from 29.44- to 115.64-fold. However, the RR dropped to 58.20- fold when Cyro-SEL strain was left unexposed suggesting unstable resistance. The Cyro-SEL strain of PSB showed lack of cross-resistance to all tested insecticides except to lufenuron (very low cross-resistance). Resistance to cyromazine was partly dominant, autosomal, and polygenic in PSB. The value of realized heritability (h2) was 0.28 suggesting low potential to develop cyromazine resistance. The projected rate (Pr) of resistance development disclosed that if 95% PSB were selected, then a tenfold increase in LC50 would suggest itself after 4 generations. The findings of our study summarized that PSB has possibility to acquire resistance under permanent selection pressure of cyromazine. The outcomes would be helpful to assist entomologists and growers to manage insecticide resistance in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All relevant data and materials are present in the manuscript.

References

  • Abbas, N., & Hafez, A. M. (2021). Resistance to insect growth regulators and age-stage, two-sex life table in Musca domestica from different dairy facilities. PLoS ONE, 16, e0248693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, N., Mansoor, M. M., Shad, S. A., Pathan, A. K., Waheed, A., Ejaz, M., Razaq, M., & Zulfiqar, M. (2014). Fitness cost and realized heritability of resistance to spinosad in Chrysoperla carnea (Neuroptera: Chrysopidae). Bulletin of Entomological Research, 104, 707–715.

    Article  CAS  PubMed  Google Scholar 

  • Abbott, W. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Adcock, G. J., Batterham, P., Kelly, L. E., & McKenzie, J. A. (1993). Cyromazine resistance in Drosophila melanogaster (Diptera: Drosophilidae) generated by ethyl methanesulfonate mutagenesis. Journal of Economic Entomology, 86, 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, M., Arif, M. I., & Ahmad, M. (2007). Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26, 809–817.

    Article  CAS  Google Scholar 

  • Ahmad, M., Sayyed, A. H., Saleem, M. A., & Ahmad, M. (2008). Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 27, 1367–1372.

    Article  CAS  Google Scholar 

  • Ali, M.A. (2018). The pesticides registered with recommendations for safe handling and use in Pakistan (pp. 54–55). Pakistan Agricultural Research Council.

  • Barnes, E., Dobson, R., & Barger, I. (1995). Worm control and anthelmintic resistance: Adventures with a model. Parasitology Today, 11, 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Basit, M., Sayyed, A. H., Saleem, M. A., & Saeed, S. (2011). Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Protection, 30, 705–712.

    Article  CAS  Google Scholar 

  • Bel, Y., Wiesner, P., & Kayser, H. (2000). Candidate target mechanisms of the growth inhibitor cyromazine: Studies of phenylalanine hydroxylase, puparial amino acids, and dihydrofolate reductase in dipteran insects. Archives of Insect Biochemistry and Physiology, 45, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Bloomcamp, C., Patterson, R., & Koehler, P. (1987). Cyromazine resistance in the house fly (Diptera: Muscidae). Journal of Economic Entomology, 80, 352–357.

    Article  CAS  PubMed  Google Scholar 

  • Bourguet, D., & Raymond, M. (1998). The molecular basis of dominance relationships: The case of some recent adaptive genes. Journal of Evolutionary Biology, 11, 103–122.

    Article  Google Scholar 

  • Bourguet, D., Genissel, A., & Raymond, M. (2000). Insecticide resistance and dominance levels. Journal of Economic Entomology, 93, 1588–1595.

    Article  CAS  PubMed  Google Scholar 

  • Darriet, F. (2021). Laboratory study of an innovative concept to control aphid pests and mosquito vectors of pathogens to humans. Pest Management Science. https://doi.org/10.1002/ps.6718

    Article  PubMed  Google Scholar 

  • El-Oshar, M., Motoyama, N., Hughes, P., & Dauterman, W. (1985). Studies on cyromazine in the house fly, Musca domestica (Diptera: Muscidae). Journal of Economic Entomology, 78, 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  • Falconer, D. (1989). Introduction to quantitative genetics (3rd ed.). Longmans Green. John Wiley & Sons.

    Google Scholar 

  • Ferguson, J. S. (2004). Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. Journal of Economic Entomology, 97, 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Finny, D. (1971). Quantal responses and the dose-response curve. Probit Analysis, 8–19.

  • Firko, M. J., & Leslie Hayes, J. (1990). Quantitative genetic tools for insecticide resistance risk assessment: Estimating the heritability of resistance. Journal of Economic Entomology, 83, 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Hu, Y., Fu, Q., Zhang, J., Oppert, B., Lai, F., Peng, Y., & Zhang, Z. (2010). Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis. Journal of Invertebrate Pathology, 105, 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Georghiou, G. (1969). Genetics of resistance to insecticides in houseflies and mosquitoes. Experimental Parasitology, 26, 224–255.

    Article  CAS  PubMed  Google Scholar 

  • Georghiou, G. P. (1983). Management of resistance in arthropods, Pest Resistance to Pesticides (pp. 769–792). Springer.

    Book  Google Scholar 

  • Ghoneim, K., Tanani, M., Hamadah, K., Basiouny, A., & Waheeb, H. (2015). Effects of Novaluron and Cyromazine, chitin synthesis inhibitors, on the larval haemogram of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). International Journal of Advance Research, 3, 554–576.

    CAS  Google Scholar 

  • Hafez, A. M., & Abbas, N. (2021). Insecticide resistance to insect growth regulators, avermectins, spinosyns and diamides in Culex quinquefasciatus in Saudi Arabia. Parasites & Vectors, 14, 1–9.

    Article  Google Scholar 

  • Jan, M. T., Abbas, N., Shad, S. A., Rafiq, M., & Saleem, M. A. (2015). Baseline susceptibility and resistance stability of Earias vittella Fabricius (Lepidoptera: Noctuidae) to cypermethrin, deltamethrin and spinosad. Phytoparasitica, 43, 577–582.

    Article  Google Scholar 

  • Kelly, J. A., Stubbs, M. R., & Maff, D. B. P. (1987). Laboratory evaluation of cyromazine against insecticide-resistant field strains of Musca domestica. Medical and Veterinary Entomology, 1, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Khan, H. A. A., & Akram, W. (2017). Cyromazine resistance in a field strain of house flies, Musca domestica L.: Resistance risk assessment and bio-chemical mechanism. Chemosphere, 167, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, M., & Jespersen, J. B. (2003). Larvicide resistance in Musca domestica (Diptera: Muscidae) populations in Denmark and establishment of resistant laboratory strains. Journal of Economic Entomology, 96, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, M., Knorr, M., Spencer, A. G., & Jespersen, J. B. (2000). Selection and reversion of azamethiphos-resistance in a field population of the housefly Musca domestica (Diptera: Muscidae), and the underlying biochemical mechanisms. Journal of Economic Entomology, 93, 1788–1795.

    Article  CAS  PubMed  Google Scholar 

  • Lai, T., & Su, J. (2011). Assessment of resistance risk in Spodoptera exigua (Hübner)(Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science, 67, 1468–1472.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Huang, Q., Yuan, J., & Tang, Z. (2007). Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pesticide Biochemistry and Physiology, 89, 169–174.

    Article  Google Scholar 

  • Li, C.-X., Cheng, X., & Dai, S.-M. (2011). Distribution and insecticide resistance of pink stem borer, Sesamia inferens (Lepidoptera: Noctuidae), in Taiwan. Formosan Entomology, 31, 39–50.

    Google Scholar 

  • Magoc, L., Yen, J. L., Hill-Williams, A., McKenzie, J. A., Batterham, P., & Daborn, P. J. (2005). Cross-resistance to dicyclanil in cyromazine-resistant mutants of Drosophila melanogaster and Lucilia cuprina. Pesticide Biochemistry and Physiology, 81, 129–135.

    Article  CAS  Google Scholar 

  • Mansoor, M. M., & Shad, S. A. (2019a). Resistance of green lacewing, Chrysoperla carnea (Stephens), to buprofezin: Cross resistance patterns, preliminary mechanism and realized heritability. Biological Control, 129, 123–127.

    Article  CAS  Google Scholar 

  • Mansoor, M. M., & Shad, S. A. (2019b). Resistance, its stability and reversion rate of resistance to imidacloprid, indoxacarb and chlorfenapyr in a field population of green lacewing Chrysoperla carnea (Stephens)(Neuroptera: Chrysopidae). Archives of Phytopathology and Plant Protection, 52, 1–11.

    Article  Google Scholar 

  • Mansoor, M. M., & Shad, S. A. (2020). Biochemical mechanism, inheritance and cross-resistance to cyromazine in a non-target Chrysoperla carnea: A potential predator of whiteflies and aphids. Chemosphere, 260, 127620.

    Article  CAS  PubMed  Google Scholar 

  • Mansoor, M. M., & Shad, S. A. (2021). Monitoring and assessment of resistance to insecticides in the lacewing Chrysoperla carnea (Stephens). Environmental Monitoring and Assessment, 193, 1–12.

    Article  Google Scholar 

  • Mansoor, M. M., Abbas, N., Shad, S. A., Pathan, A. K., & Razaq, M. (2013). Increased fitness and realized heritability in emamectin benzoate-resistant Chrysoperla carnea (Neuroptera: Chrysopidae). Ecotoxicology, 22, 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  • Mansoor, M. M., Afzal, M., Raza, A. B. M., Akram, Z., Waqar, A., & Afzal, M. B. S. (2015). Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens)(Neuroptera: Chrysopidae). Saudi Journal of Biological Sciences, 22, 317–321.

    Article  CAS  PubMed  Google Scholar 

  • Mansoor, M. M., Afzal, M. B. S., Basoalto, E., Raza, A. B. M., & Banazeer, A. (2016). Selection of bifenthrin resistance in cotton mealybug Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): Cross-resistance, realized heritability and possible resistance mechanism. Crop Protection, 87, 55–59.

    Article  CAS  Google Scholar 

  • Mansoor, M. M., Raza, A. B. M., Abbas, N., Aqueel, M. A., & Afzal, M. (2017). Resistance of green lacewing, Chrysoperla carnea Stephens to nitenpyram: Cross-resistance patterns, mechanism, stability, and realized heritability. Pesticide Biochemistry and Physiology, 135, 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Mansoor, M. M., Raza, A. B. M., & Afzal, M. B. S. (2019). Fipronil resistance in pink stem borer, Sesamia inferens (Walker)(Lepidoptera: Noctuidae) from Pakistan: Cross-resistance, genetics and realized heritability. Crop Protection, 120, 103–108.

    Article  CAS  Google Scholar 

  • Matsuda, K. (2021). Changes in the insecticide susceptibility of the American serpentine leafminer, Liriomyza trifolii (Diptera: Agromyzidae), in indoor successively reared and crop field populations over 25 years. Applied Entomology and Zoology, 1–10.

  • McKenzie, J. A., Parker, A., & Yen, J. (1992). Polygenic and single gene responses to selection for resistance to diazinon in Lucilia cuprina. Genetics, 130, 613–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem, A., Hafeez, F., Iftikhar, A., Waaiz, M., Güncan, A., Ullah, F., & Shah, F. M. (2021). Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere, 269, 129367.

    Article  CAS  PubMed  Google Scholar 

  • Nagayama, A., Arakaki, N., Kishita, M., & Yamada, Y. (2004). Emergence and mating behavior of the pink borer, Sesamia inferens (Walker)(Lepidoptera: Noctuidae). Applied Entomology and Zoology, 39, 625–629.

    Article  Google Scholar 

  • Pavani, T., UmaMaheswari, T., & Sekhar, J. (2013). Evaluation of efficacy of different insecticides and bioagents against Sesamia inferens Walker in maize. European Journal of Zoological Research, 2, 98–102.

    Google Scholar 

  • Rahman, M., Islam, M., Polan, M., Talukder, F., & Mukul, M. (2021). Relative toxicity of some chemical pesticides against jute hairy caterpillar (Spilosoma Obliqua W.) in tossa jute (Corchorus olitorius L.). Malaysian Journal of Sustainable Agriculture, 5, 115–122.

    Article  Google Scholar 

  • Robertson, J., Preisler, H. (1992). Pesticide bioassays with arthropods. CRC Boca Raton.

  • Roush, R. T., & McKenzie, J. A. (1987). Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology, 32, 361–380.

    Article  CAS  PubMed  Google Scholar 

  • Saddiq, B., Shad, S. A., Aslam, M., Ijaz, M., & Abbas, N. (2015). Monitoring resistance of Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) to new chemical insecticides in Punjab, Pakistan. Crop Protection, 74, 24–29.

    Article  CAS  Google Scholar 

  • Dos Santos, F. M., de Carvalho, J. R., Pratissoli, D., de Freitas Bueno, R. C. O., Pirovani, V. D., de Souza Rodrigues, H. (2019). Toxicity of insecticides in Duponchelia fovealis Zeller (Lepidoptera: Crambidae), a new strawberry pest in Brazil under laboratory conditions. Journal of Experimental Agriculture International, 1–7.

  • Sayyed, A. H., & Wright, D. J. (2001). Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia. Pest Management Science, 57, 413–421.

    Article  CAS  PubMed  Google Scholar 

  • Sayyed, A. H., Attique, M. N. R., Khaliq, A., & Wright, D. J. (2005). Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Management Science, 61, 636–642.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., & Plapp, F., Jr. (1990). Cyromazine resistance in the house Fly (Diptera: Muscidae): Genetics and cross-resistance to difluhenzuron. Journal of Economic Entomology, 83, 1689–1697.

    Article  CAS  PubMed  Google Scholar 

  • Sidar, Y.K., Nirmal, A., Gajbhiye, R.K., Bisen, M.S., Bhargav, P. (2017). Insect pest succession on hybrid maize and management of pink stem borer, Sesamia inferens Walker. Journal of pharmacognosy and phytochemistry, 143–150.

  • Silva, P., Siqueira, H., Silva, W., Araujo, E., Esteves Filho, A. (2021). Susceptibility of Liriomyza sativae Blanchard (Diptera: Agromyzidae) populations to reduced risk insecticides. Crop Protection, 105880.

  • Sokal, R., & Rohlf, F. (1981). Biometry (3rd ed.). WH Freeman & Co.

    Google Scholar 

  • Stone, B. (1968). A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization., 38, 325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik, B. E. (1991). Determining the mode of inheritance of pesticide resistance with backcross experiments. Journal of Economic Entomology, 84, 703–712.

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik, B. E. (1992). Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 85, 1551–1559.

    Article  Google Scholar 

  • Umashankar, H., Patel, V., Nagaraja, T., Vijaykumar, L., & Sugeetha, S. (2018). Evaluation of new insecticide molecules for their effectiveness in the management of sugarcane early shoot borer, Chilo infuscatellus (Snellen). Journal of Applied and Natural Science, 10, 434–438.

    Article  CAS  Google Scholar 

  • Wilson, T. G. (1997). Cyromazine toxicity to Drosophila melanogaster (Diptera: Drosophilidae) and lack of cross-resistance in natural population strains. Journal of Economic Entomology, 90, 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Li, C., Hu, B., Zhou, Z., & Li, X. (2011). Review of history, present situation and prospect of pink stem borer in China. Chinese Agricultural Science Bulletin, 27, 244–248.

    Google Scholar 

Download references

Acknowledgements

The author is highly thankful to Ms. Jennifer Wildonger, IPM and Compliance, Terviva, Fort Pierce, Florida, United States of America, for her efforts to improve the English language, grammar and sense of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M.M conceived and executed the experiments. M.M.M analyzed data and wrote manuscript.

Corresponding author

Correspondence to Muhammad Mudassir Mansoor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

No permission required.

Competing interest

The author declares no academic, financial or institutional conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, M.M. Risk assessment of cyromazine resistance in a field population of Sesamia inferens (Walker): Cross-resistance, inheritance, and realized heritability. Phytoparasitica 51, 547–558 (2023). https://doi.org/10.1007/s12600-023-01072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-023-01072-z

Keywords

Navigation