Skip to main content
Log in

Biological traits of Ascogaster quadridentata an endoparasitoid of the codling moth

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The developmental time, adult longevity, survival, and fecundity of Ascogaster quadridentata reared on Cydia pomonella were studied at 25 ± 2 ºC and natural lighting. Longevity was measured in different conditions: water; water and honey; and water, honey and host. Developmental time from egg to adult was 43.67 ± 0.75 days. Honey had a significant effect on the longevity of female adults. The longevity of females with water was 3 days, whereas females fed with honey had longevity values greater than 6 days. The survival curves of adults fed with honey and adults starved were different. All males with water died before 5 days; while in honey-fed males, the last adult died on days 16 and 22, with and without a host, respectively. The female began ovipositing eggs during the first days following emergence. A female produced on average, 22.3 ± 4.7 eggs/day, and more than 10% of host eggs were superparasitized. The parasitism rate was on average 17.53 ± 2.88 hosts/day, whereas the total mean parasitism was 202.75 ± 59.24 hosts/female. This study addressed new basic biological information about A. quadridentata and contribute to a better understanding of its potential as a biological control agent of codling moth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data will be available upon request from the corresponding author.

References

  • Bloem, S., Bloem, K. A., & Knight, A. L. (1998). Assessing the quality of mass-reared codling moths (Lepidoptera: Tortricidae) by using field release-recapture tests. Journal Economy Entomology, 91, 1122–1130.

    Article  Google Scholar 

  • Boyce, H. R. (1936). Laboratory breeding of Ascogaster carpocapsae Vier. with notes on biology and larval morphology. Canadian Entomologist, 48, 241–246.

    Article  Google Scholar 

  • Cox, J. A. (1932). Ascogaster carpocapsae Vier. an important larval parasite of the codling moth and oriental fruit moth. New York Technical Bulletin, New York (State) Agricultural Experiment Station, 188, 3–26.

  • Cox, J. A., & Daniel, D. M. (1935). Ascogaster carpocapsae Viereck in relation to arsenical sprays. Journal Economy Entomology, 28, 113–120.

    Article  CAS  Google Scholar 

  • Gates, S. (1993). Self and conspecific superparasitism by the solitary parasitoid Antrocephalus pandens Ecological Entomology, 18, 303–309.

    Article  Google Scholar 

  • Godfray, H. C. J. (1994). Parasitoids: Behavioral and evolutionary ecology. Princeton University Press.

    Book  Google Scholar 

  • Guenelon, G. H., Audemard, J. C., Fremond, M. A., & Ammari, E. I. (1981). Progrès réalisés dans l’élevage permanent du Carpocapse (Laspeyresia pomonella L.) sur milieu artificiel. Agronomie, 1(1), 59–64.

    Article  Google Scholar 

  • Hernández, C. M. (2015). Estudios biológicos sobre los parasitoides, Mastrus ridens Horstman y Ascogaster quadridentata Wesmael, para evaluar su potencial como agentes de Control Biológico de Cydia pomonella (L.) plaga clave del manzano.- PhD thesis. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5760_Hernandez.pdf

  • Hernández C. M., Botto E. N., Della Torre V., Lafalce C., Garrido S., Fernández D., Cichón L. (2007). Introducción de Ascogaster quadridentata Watanabe (Hymenoptera: Braconidae) para el control biológico de Cydia pomonella L. (Lepidoptera: Tortricidae), pp 193. In: Proceedings of XXX Congreso Argentino de Horticultura y I Simposio de Cultivos Protegidos. 24 -28 September, La Plata, Buenos Aires, Argentina.

  • Herz, A., & Eder, G. (2014). Flowering crops as nutritional resources for Ascogaster quadridentata (Hymenoptera, Braconidae) and other beneficial in agroecosystems. In: Proceedings of IOBC Working group Landscape Management for Functional Biodiversity meeting. (GEROWITT J., BIANCHI B., KEDZIORA F., LUPI A., VAN HELDEN D., MOONEN C. M., VAN RIJN P., Eds.). Pozan, Poland 21–23 May. IOBC/wprs Bulletin 100: 45–48. https://www.iobcwprs.org/pub/bulletins/bulletin_2014_100_table_of_contents_abstracts.pdf

  • Herz, A., Eder, G., Feiertag, S., & Wittlich, S. (2012). Use of nectar resources by Ascogaster quadridentata WESMAEL (Hymenoptera, Braconidae), an important egg-larval parasitoid of the codling moth: first evidence from laboratory studies, pp. 338–341.- In Proceedings of the 15th International Conference on Organic Fruit-Growing (FOEKO Ed.). Eco-Fruit:. 20–22 February. University of Hohenheim.

  • Herz, A., Drexler, N., Matray, S., & Veekmann, O. (2017). Nutrition ecology of Ascogaster quadridentata (Hymenoptera, Braconidae) and its host in apple orchards. In Proceeding of 5th International Entomophagous Insects Conference, Kyoto, Japan, October 16–20. http://orgprints.org/32266/2/ICEI_Herz%20%5BKompatibilitätsmodus%5D.pdf

  • Jackson, C. G., Delph, J. S., & Neemann, E. G. (1978). Development, longevity and fecundity of Chelonus blackburni (Hym.: Braconidae) as a parasite of Pectinophora gossypiella (Lep.: Gelechiidae). Entomophaga, 23, 35–42.

    Article  Google Scholar 

  • Kainoch, Y. (1982). Searching behavior and oviposition of the egg-larval parasitoid, Ascogaster reticulatus Watanabe (Hymenoptera: Braconidae). Applied Entomology and Zoology, 17(2), 194–206.

    Article  Google Scholar 

  • Kulmann, U., & Mills, N. J. (1999). Exploring the biodiversity of Central Asia to assess specialized parasitoids for biological control of Apple pests in Europe and North America. Integrated Protection in Orchard IOBC/wprs Bulletin, 22(6), 1–6.

    Google Scholar 

  • Lacey, L. A., & Unruh, T. H. (2005). Biological control of codling moth (Cydia pomonella, Lepidoptera: Tortricidae) and its role in integrated pest management, with emphasis on entomopathogens. Vedalia, 12(1), 33–60.

  • Maalouly, M., Franck, P., Bouvier, J. C., Toubon, J. F., & Lavigne, C. (2013). Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agriculture Ecosystems and Environment, 169, 33–42.

    Article  Google Scholar 

  • Maalouly, M., Franck, P., & Lavigne, C. (2015). Temporal dynamics of parasitoid assemblages parasitizing the codling moth. Biological Control, 82, 31–39.

    Article  Google Scholar 

  • Mills, N. J. (2005a). A classical biological control of codling moth: the California experience. In Second International Symposium on Biological Control of Arthropods, Davos (2), 126–131.

  • Mills, N. J. (2005b). Selecting effective parasitoids for biological control introductions: Codling moth as a case of study. Biological Control, 34, 274–282.

    Article  Google Scholar 

  • Mohamad, F., Mansour, M., & Ramadan, A. (2015). Effects of biological and environmental factors on sex ratio in Ascogaster quadridentata Wesmael (Hymenoptera: Braconidae), a parasitoid of Cydia pomonella L. (Tortricidae). Journal of Plant Protection Research, 55(2), 151–155.

    Article  CAS  Google Scholar 

  • Reed-Larsen, D. A. & Brown, J. J. (1990). Embryonic castration of the codling moth, Cydia pomonella by an endoparasitoid, Ascogaster quadridentata. Journal of Insect Physiology, 36(2),111–118.

    Article  Google Scholar 

  • Rosemberg, H. T. (1934). The biology and distribution in France of the larval parasites of the codling moth, Cydia pomonella L. Bulletin of Entomological Research, 25, 201–256.

    Article  Google Scholar 

  • Salt, G. (1934). Experimental Studies in insect parasitism. II- Superparasitism. Proceedings of the Royal Society of London, 122(B), 455–476.

  • Siekmann, G., Tenhumberg, B., & Keller, M. A. (2001). Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos, 95, 425–430.

    Article  Google Scholar 

  • Statsoft. (2000). Statistica for Windows. Computer program manual. StatSoft Inc.

    Google Scholar 

  • Subba Rao, B. R., & Gowda, G. K. V. (1961). Effect of temperature and humidity on the fecundity and longevity of Chelonus rufus Lyle (Braconidae: Hymenoptera). Proceedings of the Indian Academy of Sciences, B(54), 241–250.

  • van Alphen, J. J. M., & Visser, M. E. (1990). Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology, 35(1), 59–79.

    Article  Google Scholar 

  • Visser, M. E., Luyckx, B., Nell, H., & Boskamp, G. J. H. (1992). Adaptive superparasitism in solitary parasitoids: marking of parasitized hosts in relation to the pay-off from superparasitism. Ecological Entomology, 17, 76–82.

    Article  Google Scholar 

  • Wäckers, F. L., Van Rijn, C. J., & Heimpel, G. E. (2008). Honeydew as a food source for natural enemies: making the best of a bad meal? Biological Control, 45, 176–184.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Viviana Werber for assistance with the English version, Dra. S. N. López and Dra. M. M. Viscarret for their suggestions for improving an earlier version of the manuscript.

This study is a part a Ph.D. thesis of C. M. Hernández.

Funding

This study was funded by the Instituto Nacional de Tecnología Agropecuaria (Specific Project PNFRU 052851 and PNFRU 052841).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen M. Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, C.M., Andorno, .V. & Botto, E.N. Biological traits of Ascogaster quadridentata an endoparasitoid of the codling moth. Phytoparasitica 50, 867–873 (2022). https://doi.org/10.1007/s12600-022-01007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-01007-0

Keywords

Navigation