Skip to main content

Advertisement

Log in

Image Based High throughput Phenotyping for Fusarium Wilt Resistance in Pigeon Pea (Cajanus cajan)

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

In pigeonpea, resistance against vascular wilt disease was assessed based on leaf images captured throughred-green–blue (RGB) and chlorophyll fluorescence imaging sensors. At leaf level, wilt response in RGB images was characterized by changes in pixel intensities in red, green, and blue channels leading to variation in texture. Texture analysis based on gray level co-occurrence matrix (GLCM) was able to explain variation pattern between resistance and susceptible genotypes. Extracted texture features particularly contrast and energy were significantly different between the two genotype groups. Training of a neural network model for contrast and energy feature enabled genotype prediction with 79–98% accuracy. Healthy leaf area estimated based on photosynthetic or quantum efficiency (Fv/Fm > 0.75 as healthy) in chlorophyll fluorescence images, indicated significant variation (p < 0.05) between genotype groups at 10–25 days after inoculation (dpi). In susceptible genotype, healthy area was observed to decrease in significant proportion over time as compared to resistant type. Resistant genotype was less sensitive to infection as healthy leaf area (Fv/Fm > 0.75) remained unaffected between 10-25dpi.At canopy level, although differences in pixel intensity (Fv/Fm > 0.75) were noted between inoculated and healthy (mock) particularly in susceptible types but differences between inoculated susceptible and resistant type were non-significant (p > 0.05). Although trained ML algorithms for leaf and canopy level images resulted low accuracy (41–54%) in genotype classification but with large number of images captured later than 15 dpi expected to increase in accuracy. A protocol to facilitate non-invasive imaging techniques in association with machine learning tools is proposed over the tedious, time consuming and error-prone conventional screening method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

We authors agree to make data availability to publisher journal.

References

  • Agrios, G. N. (2005) Plant Pathology. Academic Press: PP. 522–534.

  • Ahlawat, I. P. S., Gangaiah, B., & Singh, I. P. (2005). Pigeonpea (Cajanuscajan) research in India—an overview. Indian Journal of Agricultural Sciences, 75, 309–320.

    Google Scholar 

  • Al-Saddik, H., Laybros, A., & Billiot Band Cointault, F. (2018). Using image Texture and Spectral reflectance analysis to detect Yellowness and Esca in Grapevines at leaf-level. Remote Sens., 10, 618.

    Article  Google Scholar 

  • Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany, 55, 1607–1621. https://doi.org/10.1093/jxb/erh196

    Article  CAS  PubMed  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll Fluorescence: A probe of photosynthesis in vivo. – Annu. Rev. Plant Biol., 59, 89–113.

    Article  CAS  Google Scholar 

  • Balachandran, S., Osmond, C. B., & Daley, P. F. (1994). Diagnosis of the earliest strain-specific interactions between Tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging. Plant Physiology, 104, 1059–1065. https://doi.org/10.1104/pp.104.3.1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauriege, E., Brabandt, H., Gärber, U., & Herppich, W. B. (2014). Chlorophyll fluorescence imaging to facilitate breeding of Bremialactucae-resistant lettuce cultivars. Computers and Electronics in Agriculture, 105, 74–82. https://doi.org/10.1016/j.compag.2014.04.010

    Article  Google Scholar 

  • Berger, S., Papadopoulos, M., Schreiber, U., & Kaiser Wand Riots, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.x

    Article  CAS  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital Photography and image analysis, and by hyperspectral imaging. Critical Rev Plant Sci., 29, 59–107.

    Article  Google Scholar 

  • Calderón, R., Navas-Cortés, J. A., & Lucena, C. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231–245.

    Article  Google Scholar 

  • Chaerle, L., Hagenbeek, D., De-Bruyne, E., & DerStraetenD, V. (2007). Chlorophyll fluorescence imaging for disease –resistance screening of sugar beet. Plant Cell Tiss Organ Cult., 91, 97–106.

    Article  CAS  Google Scholar 

  • Clérivet, A., Déon, V., Alami, I., Lopez, F., Geiger, J. P., & Nicole, M. (2000). Tyloses and gels associated with cellulose accumulation in vessels are responses of plane tree seedlings (Platanusacerifolia) to the vascular fungus Ceratocystis fimbriata f. spplatani. Trees Struct. Funct., 15, 25–31.

    Article  Google Scholar 

  • Csefalvay, L., DiGaspero, G., Matous, K., Bellin, D., Ruperti, B., & Olejnickova, J. (2009). Pre-symptomatic detection of Plasmoparaviticolainfection in grapevine leaves using chlorophyll fluorescence imaging. European Journal of Plant Pathology, 125, 291–302. https://doi.org/10.1007/s10658-009-9482-7

    Article  CAS  Google Scholar 

  • Cui, D., Minzan, L., & Zhang, Q. (2009). Development of an optical sensor for crop leaf chlorophyll content detection. Computers and Electronics in Agriculture, 69, 171–176.

    Article  Google Scholar 

  • Diaz-Lago, J. E., Stuthman, D. D., & Leonard, K. J. (2003). Evaluation of components of partial resistance to oat crown rust using digital image analysis. Plant Disease, 87, 667–674. https://doi.org/10.1094/PDIS.2003.87.6.667

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., Ling, N., Wang, M., Shen, Q., & Guo, S. (2012). Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant PhysiolBiochem, 60, 171–179.

    CAS  Google Scholar 

  • Fakrentrapp J, Ria, F, Geilhausen M, Panassiti B (2019) Detection of Gray mold leaf infections prior to visual symptom appearance using a five-band Multispectral sensor. Front. Plant Sci., https://doi.org/10.3389/fpls.2019.00628

  • FAO STAT: https://www.fao.org/faostat (2018-19). Area, Production and Productivity of Pigeonpea world data

  • Fradin, E. F., & Thomma, B. P. H. J. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V.dahliaeand V.albo- atrum. Molecular Plant Pathology, 7, 71–86.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, S., & KanwarP, J. G. (2017). Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctoniasolani. Science and Reports, 7, 41610. https://doi.org/10.1038/srep41610

    Article  CAS  Google Scholar 

  • Granum, E., Pérez-Bueno, M. L., Calderón, C. E., Ramos, C., de Vicente, A., & Cazorla, F. M. (2015). Metabolic responses of avocado plants to stress induced by Rosellinianecatrixanalysed by fluorescence and thermal imaging. European Journal of Plant Pathology, 142, 625–632. https://doi.org/10.1007/s10658-015-0640-9

    Article  CAS  Google Scholar 

  • Ha, J. G., Moon, H., Kwak, J. T., Hassan, S. I., Dang, L. M., Lee, O. N., & Park, H. Y. (2017). J. Appl. Remote Sens., 11, 042621.

    Article  Google Scholar 

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610–621.

    Article  Google Scholar 

  • Hervás, A., Trapero-Casas, J. L., & Jiménez-Díaz, R. M. (1995). Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Disease, 79, 1110–1116.

    Article  Google Scholar 

  • HonoratoJunior, J., Zambolim, L., Duarte, H. S. S., Aucique-Pérez, C. E., & Rodrigues, F. A. (2015). Effects of epoxiconozale and pyraclostrobin fungicides in the infection process of Hemileiavastatrix on coffee leaves as determined by chlorophyll a fluorescence imaging. Journal of Phytopathology, 163, 968–977. https://doi.org/10.1111/jph.12399

    Article  CAS  Google Scholar 

  • Huang, K. Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57, 3–11.

    Article  Google Scholar 

  • Indiastat.com: https://www.indiastat.com (2018–19.) Area, Production and Productivity, of Pigeonpea in India

  • Ivanov, D. A., & Bernards, M. A. (2016). Chlorophyll fluorescence imaging as a tool to monitor the progress of a root pathogen in a perennial plant. Planta, 243, 263–279. https://doi.org/10.1007/s00425-015-2427-9

    Article  CAS  PubMed  Google Scholar 

  • Jain, K. C., & Reddy, M. V. (1995). Inheritance of resistance to Fusarium wilt in pigeonpea (Cajanuscajan (L.) Millsp.). Indian J Genet, 55, 434–437.

    Google Scholar 

  • Kai S, Zhikun L, Hang S, Chunhong G (2011) A research of maize disease image recognition of corn based on BP networks, in IEEE Third International Conference on Measuring Technology and Mechatronics Automation, pp.246–249.

  • Kaundal, R., Kapoor, A. S., & Raghava, G. P. S. (2006). Machine learning techniques in disease forecasting: A case study on rice blast prediction. BMC Bioinformatics, 7, 485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuckenberg, J., Tartachnyk, I., & Noga, G. (2009). Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agriculture, 10, 34–44. https://doi.org/10.1007/s11119-008-9082

    Article  Google Scholar 

  • Leng, Q., Qi, H., Miao, J., Zhu, W., & Su, G. (2015). One-class classification with extreme learning machine. Mathematical Problems Engineering, pp. 11.

  • Lorenzen, B. and Jensen, A. (1988). Reflectance of blue, green, red and near infrared radiation from wetland vegetation used in a model discriminating live and dead above ground biomass. https://doi.org/10.1111/j.1469-8137.1988.tb04173.x

  • Mahlein, A. K., Alisaac, E., Masri, A. A., Behmann, J., Dehne, H. W., & Erich-Christian, O. E. C. (2013). Comparison and combination of Thermal, Fluorescence, and Hyperspectral imaging for monitoring Fusarium head blight of Wheat on spikelet scale. Sensors, 19, 2281. https://doi.org/10.3390/s19102281

    Article  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Mokhtar, U., Ali, M. A., Hassanien, A. E., & Hefny, H. (2015). Identifying two of tomatoes leaf viruses using support vector machine. Information Systems Design and Intelligent Applications, pp. 771–782.

  • Nene, Y. L., & Kannaiyan, J. (1982). Screening of pigeonpea for resistance to Fusarium wilt. Plant Disease, 66, 306–307.

    Article  Google Scholar 

  • Nene Y L(1980)Proceedings Consultants Group. Discussion on Resistance to soil borne diseases in Legumes, ICRISAT, India.167 pp.

  • Nichols, J. A., Hsien, W., Chan, H., & Baker, M. A. B. (2019). Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11, 111–118.

    Article  PubMed  Google Scholar 

  • Okiror, M. A. (2002). Genetics of wilt resistance in pigeonpea. Indian J Genet, 62, 218–220.

    Google Scholar 

  • OxboroughK, B. N. R. (1997). Resolving chlorophyllafluorescence images of photosynthetic efficiency into photo-chemical and non-photochemical components-calculation of qPandFv’/Fm’ without measuring F0’. Photosynthesis Research, 54, 135–142.

    Article  Google Scholar 

  • Parlevliet, J. E. (1979). Components of resistance that reduce the rate of disease epidemic development. Annual Review of Phytopathology, 17, 203–232.

    Article  Google Scholar 

  • Parupalli, S., Saxena, R. K., Sameerkumar, C. V., Sharma, M., Singh, V. K., Vechalapu, S., Kavikishor, P. B., Saxena, K. B., & VarshneyRK,. (2017). Genetics of fusarium wilt resistance in pigeonpea as revealed by phenotyping of RILs S. Journal of Food Legumes, 30, 241–244.

    Google Scholar 

  • Pérez-Bueno, M. L., Pineda, M., & Barón, M. (2019). Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. Frontiers in Plant Science, 10, 1135. https://doi.org/10.3389/fpls.2019.01135

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda, M., Pérez-Bueno, M. L., & Barón, M. (2018). Detection of bacterial infection in melon plants by classification methods based on imaging data. Frontiers in Plant Science, 9, 164. https://doi.org/10.3389/fpls.2018.00164

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland, J. A., Balint-Kurti, P. J., Wisser, R. J., Pratt, R. C., & Nelson, R. J. (2009). Shades of gray: The world of quantitative disease resistance. Trends in Plant Science, 14, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Pydipati R, Burks TF, Lee WS (2006) Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric. 52 (1)

  • Rafael, G. (2018). Digital image processing. New York, NY: Pearson.

  • Rahman, M. A., Abdullah, H., & Vanhaecke, M. (1999). Histopathology of susceptible and resistant Capsicum annuumcultivars infected with Ralstonia solanacearum. Journal of Phytopathology, 147, 129–140.

    Article  Google Scholar 

  • Rios, J. A., Aucique-Pérez, C. E., Debona, D., Cruz Neto, L. B. M., Rios, V. S., & Rodrigues, F. A. (2017). Changes in leaf gas exchange, chlorophyll a fluorescence and antioxidant metabolism within wheat leaves infected by Bipolarissorokiniana. The Annals of Applied Biology, 170, 189–203. https://doi.org/10.1111/aab.1232

    Article  CAS  Google Scholar 

  • Rolfe, S. A & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma, 247, 163–175. https://doi.org/10.1007/s00709-010-0203-z

    Article  CAS  PubMed  Google Scholar 

  • Rousseau, C., Belin, E., Bove, E., Rousseau, D., Fabre, F., & Berruyer, R. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 9, 17. https://doi.org/10.1186/1746-4811-9-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, P. S. (1989). Spectral reflectance characteristics of vegetation and their use in estimating productive potential. Proc. Indian Acad. Sci. (plant Sci.), 99, 59–81.

    Article  Google Scholar 

  • Santhanam, P., VanesseHP, AlbertI., Faino, L., & NurnbergerT and Thomma BP,. (2013). Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-Microbe Interactions, 26, 278–286.

    Article  CAS  PubMed  Google Scholar 

  • Savary, S., Nelson, A., Willocquet, L., & PanggaI, A. J. (2012). Modelling and mapping potential epidemics of rice diseases globally. Crop Protection, 34, 6–17.

    Article  Google Scholar 

  • Saxena, K. B., Kumar, R. V., Saxena, R. K., Sharma, M., Srivastava, R. K., Sultana, R., Varshney, R. K., Vales, M. I., & Pande, S. (2012). Identification of dominant and recessive genes for resistance to Fusarium wilt in pigeonpea and their implication in breeding hybrids. Euphytica, 188, 221–227.

    Article  CAS  Google Scholar 

  • Scholes, J. D., & Rolfe, S. A. (2009). Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performances: A Phenomics prospective. Functional Plant Biology, 36, 880–892.

    Article  PubMed  Google Scholar 

  • Sebela, D., Quinones, C., Cruz, C. V., Ona, I., Olejnickova, J., & Jagadish, K. S. V. (2018). Chlorophyll fluorescence and reflectance-based non-invasive quantification of blast, bacterial blight and drought stresses in rice. Plant and Cell Physiology, 59, 30–43. https://doi.org/10.1093/pcp/pcx

    Article  CAS  PubMed  Google Scholar 

  • Sekulska-Nalewajko, J., Kornas, A., Gocławski, J., Miszalski, Z., & Kuźniak, E. (2019). Spatial referencing of chlorophyll fluorescence images for quantitative assessment of infection propagation in leaves demonstrated on the ice plant: Botrytis cinereapathosystem. Plant Methods, 15, 18. https://doi.org/10.1186/s13007-019-0401-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Simko, I., Jimenez-Berni, J. A., & Furbank, R. T. (2012). Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging. Postharvest Biology and Technology, 106, 44–52. https://doi.org/10.1016/j.postharvbio.2015.04.007

    Article  CAS  Google Scholar 

  • Singh, D., Sinha, R. V. P., Singh, M. N., Singh, D. K., Kumar, R., & Singh, A. K. (2016). Genetics of Fusarium Wilt Resistance in Pigeonpea (Cajanuscajan) and Efficacy of Associated SSR Markers. Plant Pathology Journal, 32, 95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperschneider, J., Gardiner, D. M., Dodds, P. N., Tini, F., & CovarelliL, S. K. B. (2016). EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytologist, 210, 743–761. https://doi.org/10.1111/nph.13794

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, R. S., & Rai, B. (1992). Wilt disease of pigeonpea. In: Singh, U., Mukhopadyaya, U., Kumar, A., & Chaube, H. S. (Eds.). Plant Disease of International Importance. Prentice Hall, Engelwood cliffs New Jersey, pp. 388–404.

  • West, J. S., Bravo, C., Oberti, R., & Lemaire, D. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B. J., Jia, P. S., Gao, F., & Guo, H. S. (2012). Molecular characterization and function analysis of a necrosis and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Molecular Plant-Microbe Interactions, 25, 964–975.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Head and Professor, Division of Plant Pathology, Joint Director and Director, ICAR-Indian Agricultural Research Institute New Delhi for overall support.

Funding

This work was funded by the ICAR-Indian Agricultural Research Institute New Delhi under the Post-Graduate Research activities and National Agricultural Science Fund (NASF) funded NanajiDeshmukh Plant Phenomics Center, ICAR-IARI, New Delhi.

RKB acknowledges the RGNFD fellowship received from UGC, Govt of India, New Delhi; For the pursuance of PhD degree at Indian Agricultural Research Institute, New-Delhi-110012.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PS and RKB; investigation: RKB, DR, SK and PS; writing—original draft preparation: PS, RKB, RD, SD and SNM; reviewing and editing: RKB, PS, DR, KG and RSR; machine learning- SD and SNM; supervision: RA, CV and PS.

Corresponding author

Correspondence to Rudrappa K. Bannihatti.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving Human Participants / Animals

Research work has been carried out in different pigeonpeagenotypesfor resistance phenotyping. There is no involvement of Humans participation or Animals present experimentaltrial purpose.

Informed consent

All authors have informed and had consent about reviewing and publishing in European Plant Pathology Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12600_2022_993_MOESM1_ESM.docx

Supplementary file1 (DOCX 26 KB) Supplementary Fig. 1 Wilt severity index 20 (WSI20) of reference pigeonpea genotypes (susceptible – ICP2376 and Gulyal local; resistant- Asha and Maruti) in 30 days old seedlings (soil inoculation with F udum spore suspension 3.4 x104 /mL) maintained in glasshouse (28°±1.5°C).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannihatti, R.K., Sinha, P., Raju, D. et al. Image Based High throughput Phenotyping for Fusarium Wilt Resistance in Pigeon Pea (Cajanus cajan). Phytoparasitica 50, 1075–1090 (2022). https://doi.org/10.1007/s12600-022-00993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-00993-5

Keywords

Navigation