Abstract
Tomato (Solanum lycopersicum) is a valuable crop worldwide and is widely infected with the potyvirus potato virus Y (PVY), which causes serious yield loss. Viral infection depends on host elements and the eukaryotic translation initiation factor 4E (eIF4E) is essential in the potyvirus life cycle. To generate potyvirus resistance, the tomato SleIF4E1 and SleIF4E2 genes were disrupted and knockout mutants (sleif4e1, sleif4e2 and double mutant sleif4e1/e2) were generated using CRISPR/Cas9 technology. Mutant plants were evaluated for resistance to PVY following mechanical inoculation. The sleif4e1 and sleif4e1/e2 mutants did not display the PVY related symptoms as observed in wild type and sleif4e2 plants. During the first 21 days post infection, PVY coat protein accumulation was significantly lower in the sleif4e1, sleif4e1/e2 mutants than in the wild type and sleif4e2 plants and was undetectable 32 days post infection. However, PVY RNA accumulation was observed in sleif4e1 and sleif4e1/e2 virus resistant plants, reflecting that resistance is associated with impaired translation and not viral RNA accumulation. Interestingly, two amino acid changes, 119H/Y and 123S/N, were observed in the viral-encoded VPg gene in sleif4e1/e2 double mutant plants infected with PVY, indicating selection pressure on viral genes during replication. None of the mutant plants showed resistance to any virus but PVY when challenged with eggplant mild leaf mottle virus, cucumber mosaic virus, pepino mosaic virus and tomato brown rugose fruit virus. Thus, it was demonstrated that SleIF4E-mediated resistance is specific to PVY.
This is a preview of subscription content, access via your institution.







Data availability
The results presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.
References
Ala-Poikela, M., Goytia, E., Haikonen, T., Rajamäki, M.-L., & Valkonen, J. P. T. (2011). Helper component proteinase of the genus potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. Journal of Virology, 85(13), 6784–6794. https://doi.org/10.1128/JVI.00485-11
Atarashi, H., Jayasinghe, W. H., Kwon, J., Kim, H., Taninaka, Y., Igarashi, M., et al. (2020). Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus Y in tomato. Frontiers in Microbiology, 11, 3075. https://doi.org/10.3389/fmicb.2020.564310
Bastet, A., Robaglia, C., & Gallois, J.-L. (2017). eIF4E resistance: Natural variation should guide gene editing. Trends in Plant Science, 22(5), 411–419. https://doi.org/10.1016/j.tplants.2017.01.008
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140–1153. https://doi.org/10.1111/mpp.12375
de Ronde, D., Butterbach, P., & Kormelink, R. (2014). Dominant resistance against plant viruses. Frontiers in Plant Science, 5, 307. https://doi.org/10.3389/fpls.2014.00307
Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19–21. https://doi.org/10.1007/BF02712670
Dombrovsky, A., Sapkota, R., Lachman, O., & Antignus, Y. (2012). Eggplant mild leaf mottle virus (EMLMV), a new putative member of the genus Ipomovirus that harbors an HC-pro gene. Virus Genes, 44(2), 329–337. https://doi.org/10.1007/s11262-011-0686-5
Duff-Farrier, C. R. A., Candresse, T., Bailey, A. M., Boonham, N., & Foster, G. D. (2015). Evidence for different, host-dependent functioning of Rx against both wild-type and recombinant Pepino mosaic virus. Molecular Plant Pathology, 17(1), 120–126. https://doi.org/10.1111/mpp.12256
Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. The Plant Journal, 32(6), 927–934. https://doi.org/10.1046/j.1365-313X.2002.01481.x
Gallois, J.-L., Charron, C., Sánchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., et al. (n.d.). Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. Journal of General Virology, 91(1), 288–293. https://doi.org/10.1099/vir.0.015321-0
Gauffier, C., Lebaron, C., Moretti, A., Constant, C., Moquet, F., Bonnet, G., et al. (2016). A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. The Plant Journal, 85(6), 717–729. https://doi.org/10.1111/tpj.13136
Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., et al. (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 17(2), 421–434. https://doi.org/10.1111/pbi.12987
Harrison, B. D. (2002). Virus variation in relation to resistance-breaking in plants. Euphytica, 124(2), 181–192. https://doi.org/10.1023/A:1015630516425
Karasev, A. V., & Gray, S. M. (2013). Continuous and emerging challenges of potato virus Y in potato. Annual Review of Phytopathology, 51(1), 571–586. https://doi.org/10.1146/annurev-phyto-082712-102332
Kimalov, B., Gal-On, A., Stav, R., Belausov, E., & Arazi, T. (2004). Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity. Journal of General Virology, 85(11), 3421–3430. https://doi.org/10.1099/vir.0.80417-0
Klap, C., Luria, N., Smith, E., Bakelman, E., Belausov, E., Laskar, O., et al. (2020). The potential risk of plant-virus disease initiation by infected tomatoes. Plants, 9(5), 623. https://doi.org/10.3390/plants9050623
Kravchik, M., Sunkar, R., Damodharan, S., Stav, R., Zohar, M., Isaacson, T., & Arazi, T. (2014). Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant. Journal of Experimental Botany, 65(2), 725–739. https://doi.org/10.1093/jxb/ert428
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology Evolution, 35(6), 1547–1549.
Langner, T., Kamoun, S., & Belhaj, K. (2018). CRISPR crops: Plant genome editing toward disease resistance. Annual Review of Phytopathology, 56, 479–512. https://doi.org/10.1146/annurev-phyto-080417-050158
Lebaron, C., Rosado, A., Sauvage, C., Gauffier, C., German-Retana, S., Moury, B., & Gallois, J.-L. (2016). A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability. Journal of General Virology, 97(11), 3063–3072. https://doi.org/10.1099/jgv.0.000609
Lellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Current Biology, 12(12), 1046–1051. https://doi.org/10.1016/S0960-9822(02)00898-9
Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberté, J. F. (2000). Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. Journal of Virology, 74(17), 7730–7737. https://doi.org/10.1128/jvi.74.17.7730-7737.2000
Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., & Chen, L.-L. (2017). CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant, 10(3), 530–532. https://doi.org/10.1016/j.molp.2017.01.003
Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O., & Dombrovsky, A. (2017). New Israeli Tobamovirus isolate infects tomato plants harboring tm-22 resistance genes. PLoS One, 12, e0170429.
Mäkinen, K., & Hafrén, A. (2014). Intracellular coordination of potyviral RNA functions in infection. Frontiers in Plant Science, 5, 110. https://doi.org/10.3389/fpls.2014.00110
Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., & Caranta, C. (2011). Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One, 6(12), e29595. https://doi.org/10.1371/journal.pone.0029595
McCormick, S. (1997). Transformation of tomato with Agrobacterium tumefaciens. In K. Lindsey (Ed.), Plant Tissue Culture Manual: Supplement 7 (pp. 311–319). Springer Netherlands. https://doi.org/10.1007/978-94-009-0103-2_17
Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H., & Okada, Y. (1989). Mutations in the tobacco mosaic virus 30-kD protein gene overcome tm-2 resistance in tomato. The Plant Cell, 1(5), 515–522. https://doi.org/10.1105/tpc.1.5.515
Moury, B., Lebaron, C., Szadkowski, M., Khalifa, M. B., Girardot, G., Bi, B. A. B., Koné, D., Nitiema, L. W., Fakhfakh, H., & Gallois, J. L. (2020). Knock-out mutation of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to pepper veinal mottle virus in tomato. Virology, 539, 11–17.
Murphy, J. F., Rhoads, R. E., Hunt, A. G., & Shaw, J. G. (1990). The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology, 178(1), 285–288. https://doi.org/10.1016/0042-6822(90)90405-g
Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., et al. (2003). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiology, 132(3), 1272–1282. https://doi.org/10.1104/pp.102.017855
Nieto, C., Piron, F., Dalmais, M., Marco, C. F., Moriones, E., Gómez-Guillamón, M. L., et al. (2007). EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology, 7(1), 34. https://doi.org/10.1186/1471-2229-7-34
Poulicard, N., Pinel-Galzi, A., Fargette, D., & Hébrard, E. (2014). Alternative mutational pathways, outside the VPg, of rice yellow mottle virus to overcome eIF(iso)4G-mediated rice resistance under strong genetic constraints. Journal of General Virology, 95(1), 219–224. https://doi.org/10.1099/vir.0.057810-0
Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., et al. (2010). An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One, 25;5(6), e11313.
Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17(8), 1276–1288. https://doi.org/10.1111/mpp.12417
Radcliffe, E. B., & Ragsdale, D. W. (2002). Aphid-transmitted potato viruses: The importance of understanding vector biology. American Journal of Potato Research, 79(5), 353–386. https://doi.org/10.1007/BF02870173
Revers, F., & García, J. A. (2015). Chapter three - molecular biology of Potyviruses. In K. M. and T. C. Mettenleiter (Ed.), Advances in virus research (Vol. 92, pp. 101–199). Academic Press.
Ruffel, S., Gallois, J. L., Lesage, M. L., & Caranta, C. (2005). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics, 274(4), 346–353. https://doi.org/10.1007/s00438-005-0003-x
Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32(6), 1067–1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
Sanfaçon, H. (2015). Plant translation factors and virus resistance. Viruses, 7(7), 3392–3419. https://doi.org/10.3390/v7072778
Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., et al. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.x
Tavert-Roudet, G., Abdul-Razzak, A., Doublet, B., Walter, J., Delaunay, T., German-Retana, S., et al. (2012). The C terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral VPg and with lettuce translation eukaryotic initiation factor 4E. The Journal of General Virology, 93(Pt 1), 184–193. https://doi.org/10.1099/vir.0.035881-0
Tavert-Roudet, G., Anne, A., Barra, A., Chovin, A., Demaille, C., & Michon, T. (2017). The potyvirus particle recruits the plant translation initiation factor eIF4E by means of the VPg covalently linked to the viral RNA. Molecular Plant-Microbe Interactions, 30(9), 754–762. https://doi.org/10.1094/MPMI-04-17-0091-R
Truniger, V., & Aranda, M. A. (2009). Recessive resistance to plant viruses. In G. Loebenstein & J. P. Carr (Eds.), Advances in virus research (Vol. 75, pp. 119–231). Caister Academic Press.
Wang, A., & Krishnaswamy, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13(7), 795–803. https://doi.org/10.1111/j.1364-3703.2012.00791.x
Wang, X., Kohalmi, S. E., Svircev, A., Wang, A., Sanfaçon, H., & Tian, L. (2013). Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS One, 8(1), e50627. https://doi.org/10.1371/journal.pone.0050627
Wang, X.-B., Wu, Q., Ito, T., Cillo, F., Li, W.-X., Chen, X., et al. (2010). RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107(1), 484–489. https://doi.org/10.1073/pnas.0904086107
Weber, H., Schultze, S., & Pfitzner, A. J. (1993). Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the tm-2(2) resistance gene in the tomato. Journal of Virology, 67(11), 6432–6438.
Wei, T., & Wang, A. (2008). Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. Journal of Virology, 82(24), 12252–12264. https://doi.org/10.1128/JVI.01329-08
Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., et al. (2010). Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. https://doi.org/10.1371/journal.ppat.1000962
Whitworth, J. L., Nolte, P., McIntosh, C., & Davidson, R. (2006). Effect of potato virus Y on yield of three potato cultivars grown under different nitrogen levels. Plant Disease, 90(1), 73–76. https://doi.org/10.1094/PD-90-0073
Wittmann, S., Chatel, H., Fortin, M. G., & Laliberté, J.-F. (1997). Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 234(1), 84–92. https://doi.org/10.1006/viro.1997.8634
Yoon, Y.-J., Venkatesh, J., Lee, J.-H., Kim, J., Lee, H.-E., Kim, D.-S., & Kang, B.-C. (2020). Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Frontiers in Plant Science, 11, 1098. https://doi.org/10.3389/fpls.2020.01098
Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S., & Ishikawa, M. (2004). The Arabidopsis Cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. Journal of Virology, 78(12), 6102–6111. https://doi.org/10.1128/JVI.78.12.6102-6111.2004
Zhao, Y., Yang, X., Zhou, G., & Zhang, T. (2020). Engineering plant virus resistance: From RNA silencing to genome editing strategies. Plant Biotechnology Journal, 18(2), 328–336. https://doi.org/10.1111/pbi.13278
Funding
This research work was supported by the Chief Scientist of the Israeli Ministry of Agriculture and Rural Development No. 20-02-0053.
Author information
Authors and Affiliations
Contributions
S.K.: virology, cross and self-pollination, mutant characterization, double mutant generation, genotyping, molecular analysis, western blotting, manuscript writing. B.A.: transformation and greenhouse establishment of T0 plants, mutant characterization, manuscript writing. M.K.: construct preparation, transformation, mutant characterization, pollination and genotyping, ToBRFV blotting. R.K.: virology, molecular and western blot analysis. M.B: growing experimental plants. D.L.: construct preparation. Y.S.: construct preparation, transformation, pollination. M.C.: genotyping and DNA extraction. S.K., M.K., R.K., B.A., D.L., V.G. and A.G. revised the manuscript. A.G.: conceived and designed the research. All authors contributed to the article and approved the submitted version.
Corresponding author
Ethics declarations
Conflict of interest
The author(s) declare that there are no conflicts of interest’ under a Conflicts of interest heading
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information

Supplementary Fig. 1
Amino acid alignment of SleIF4E1, SleIF4E2 and SleIF(iso)4E proteins. Amino acid residues colored in red are conserved in all proteins, whereas amino acids colored in green are conserved in SleIF4E1 and SleIF4E2, and not in SleIF(iso)4E (PNG 1546 kb)
Supplementary Table S1
Details of primers used for amplification of sgRNAs targeted regions, real time PCR and Vpg analysis (DOCX 13 kb)
Rights and permissions
About this article
Cite this article
Kumar, S., Abebie, B., Kumari, R. et al. Development of PVY resistance in tomato by knockout of host eukaryotic initiation factors by CRISPR-Cas9. Phytoparasitica 50, 743–756 (2022). https://doi.org/10.1007/s12600-022-00991-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12600-022-00991-7
Keywords
- eIF4E1
- eIF4E2
- PVY
- CRISPR/Cas9
- Susceptibility genes
- Recessive resistance