Abstract
In this paper we hypothesize that the attraction of the cashew whitefly, Aleurodicus cocois, depends on volatile emissions from cashew plants. To test this hypothesis, we determined the degree of A. cocois infestation in dwarf-cashew clones: CCP 76, EMBRAPA 51 and PRO 143/7 under field conditions, we evaluated the behavioral response of A. cocois adult females to plant volatiles of these clones in a 4-way olfactometer, and we characterized the volatile organic compounds released by each dwarf cashew clone by solid-phase microextraction and coupled gas chromatography-mass spectrometry (GC-MS). Under field conditions, the highest degree of A. cocois infestation was found in EMBRAPA 51 while PRO 143/7 was the least infested clone. Bioassays revealed that volatile compounds of CCP 76 were attractive to A. cocois over clean air, while EMBRAPA 51 and PRO 143/7 volatiles were not attractive to whiteflies. The dwarf cashew clones released common volatile compounds that differed in quantity. According to the principal component analysis the compounds α-pinene, myrcene, carene δ-2, limonene, α-copaene, β-caryophyllene, β-ocimene, allo-ocimene and neo-allo-ocimene were emitted at intermediate levels by clone CCP 76 compared to EMBRAPA 51 and PRO 143/7. Additionally, some compounds (o- cymene and 2,6-dimethyl-1,3,5,7-octatetraene, (E, E)-) were found exclusively in the samples of CCP 76. The results suggest that cashew volatile compounds may be determining factors in A. cocois choice of host plants and that the susceptibility of clone CCP 76 to this insect may be associated with the release of appropriate proportions of attractive volatile compounds.
Similar content being viewed by others
References
Abdullah, S. M., Abbas, A. M., Ali, H. A., Abdelmagid, F. M., & Adam, A. H. (2020). Assessment of Ocimum Basilicum As potentially fruit flies attractant. Journal of Agronomy Research, 2(4), 34. https://doi.org/10.14302/issn.2639-3166.jar-20-3250
Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Allured Publishing Corp.
Alfaia, J. P., Barros, M. E. N., Melo, L. L., Lima, D. B., Dias-Pini, N. D. S., & Melo, J. W. S. (2018a). Biological performance of the predatory mites Amblyseius largoensis and Euseius concordis fed on eggs of Aleurodicus cocois. Systematic and Applied Acarology, 23(8), 1559-1566. https://doi.org/10.11158/saa.23.11.2
Alfaia, J. P., Melo., L. L., Monteiro, N. V., Lima, D. B., & Melo, J. W. S. (2018). Functional response of the predaceous mites Amblyseius largoensis and Euseius concordis when feeding on eggs of the cashew tree giant whitefly Aleurodicus cocois. Systematic and Applied Acarology, 23(8), 1559–1566. https://doi.org/10.11158/saa.23.8.6
Backer, L., Megido, R. C., Fauconnier, M. L., Brostaux, Y., Francis, F., & Verheggen, F. (2015). Tuta absoluta-induced plant volatiles: attractiveness towards the generalist predator Macrolophus pygmaeus. Arthropod-Plant Interactions, 9(5), 465–476. https://doi.org/10.1007/s11829-015-9388-6
Bleeker, P. M., Diergaarde, P. J., Ament, K., Guerra, J., Weidner, M., Schütz, S., & Schuurink, R. C. (2009). The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiology, 151(2), 925–935. https://doi.org/10.1104/pp.109.142661
Bleicher, E., Melo, Q. M. S., & Furtado, I. P. (1993). Sugestões de técnicas de amostragem para as principais pragas do cajueiro. Comunicado Técnico Embrapa-Cnpat. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/419409. Accessed 3 June 2020
Bleeker, P. M., Diergaarde, P. J., Ament, K., Schütz, S., Johne, B., Dijkink, J., & Haring. (2011). Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 72(1), 68–73. https://doi.org/10.1016/j.phytochem.2010.10.014
Bruce, T. J., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry, 72(13), 1605–1611. https://doi.org/10.1016/j.phytochem.2011.04.011
Clavijo, M. A., Gershenzon, J., & Unsicker, S. B. (2014). Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant, Cell & Environment, 37(8), 1836–1844. https://doi.org/10.1111/pce.12357
Darshanee, H. L., Ren, H., Ahmed, N., Zhang, Z. F., Liu, Y. H., & Liu, T. X. (2017). Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Frontiers in Plant Science, 8, 1285. https://doi.org/10.3389/fpls.2017.01285
Degen, T., Dillmann, C., Marion-Poll, F., & Turlings, T. C. (2004). High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiology, 135(4), 1928–1938. https://doi.org/10.1104/pp.104.039891
Delphia, C. M., Rohr, J. R., Stephenson, A. G., Moraes, C. M., & Mescher, M. C. (2009). Effects of genetic variation and inbreeding on volatile production in a field population of horsenettle. International Journal of Plant Sciences, 170(1), 12–20. https://doi.org/10.1086/593039
Du, W., Han, X., Wang, Y., & Qin, Y. (2016). A primary screening and applying of plant volatiles as repellents to control whitefly Bemisia tabaci (Gennadius) on tomato. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep22140
El-Sayed, A. M., Byers, J. A., Manning, L. M., Jürgens, A., Mitchell, V. J., & Suckling, D. M. (2008). Floral scent of Canada thistle and its potential as a generic insect attractant. Journal of Economic Entomology, 101(3), 720–727. https://doi.org/10.1093/jee/101.3.720
Fan, L. Q., Yan, S. C., Sun, Z. H., & Meng, Z. J. (2013). EAG and behavioral responses of Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) to plant volaties. Chinese Journal of Ecology, 32(1), 142–148
Fancelli, M., Sousa, M. R., Silva, T. S. M., Girardi, E. A., Laumann, R. A., & Coelho Filho, M. A. (2017). SOLF–System for data acquisition in olfactometry bioassays. Citrus Research & Technology, 38(1), 95–98. https://doi.org/10.4322/crt.ICC0123
Fernandes, N. D. S., Silva, F. A. N., Aragão, F. A., Zocolo, G. J., & Freitas, B. M. (2019). Volatile organic compounds role in selective pollinator visits to commercial melon types. Journal of Agricultural Science, 11(3), 93–108. https://doi.org/10.5539/jas.v11n3p93
Goiana, E. S., Dias-Pini, N. S., Neto, V., Filho, F. C., Silva, A. A. G., & Saraiva, W. V. A. C. S. B., & (2020a). Dwarf cashew antibiotic and antixenotic resistance to the whitefly Aleurodicus cocois. Anais da Academia Brasileira de Ciências, 92. e20180663
Goiana, E. S., Dias-Pini, N. S., Vidal Neto, F. C., Maciel, G. P. S., Pastori, L. P., & Melo, J. W. (2017). Some biological parameters and colonization of Aleurodicus cocois on dwarf-cashew. Idesia, 35(2), 117–120. https://doi.org/10.4067/S0718-34292017005000030
Goiana, E. S., Dias-Pini, N. S., Muniz, C. R., Soares, A. A., Alves, J. C., Vidal‐Neto, F. C., & Bezerra, C. S. S. (2020). Dwarf‐cashew resistance to whitefly (Aleurodicus cocois) linked to morphological and histochemical characteristics of leaves. Pest Management Science, 76(2), 464–471. https://doi.org/10.1002/ps.5531
Hegde, M., Oliveira, J. N., Costa, J. G., Bleicher, E., Santana, A. E. G., Bruce, T. J. A., & Birkett, M. A. (2011). Identification of semiochemicals involved in tritrophic interactions betweencotton, Gossypium hirsutum, cotton aphids, Aphis gossypii. Journal of Chemical Ecology, 37, 741–750. https://doi.org/10.1007/s10886-011-9980-x
Horowitz, A. R., & Ishaaya, I. (2014). Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Management Science, 70(10), 1568–1572. https://doi.org/10.1002/ps.3752
Kergunteuil, A., Dugravot, S., Danner, H., Van Dam, N. M., & Cortesero, A. M. (2015). Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a ‘push-pull’strategy toward the cabbage root fly, Delia radicum. Journal of Chemical Ecology, 41(4), 330–339. https://doi.org/10.1007/s10886-015-0575-9
Li, Y., Zhong, S., Qin, Y., Zhang, S., Gao, Z., Dang, Z., & Pan, W. (2014). Identification of plant chemicals attracting and repelling whiteflies. Arthropod-plant Interactions, 8(3), 183–190. https://doi.org/10.1007/s11829-014-9302-7
Melo, J. W. S., Lima, D. B., Sabelis, M. W., Pallini, A., & Gondim, M. G. C. (2014). Host finding behaviour of the coconut mite Aceria guerreronis. Experimental and Applied Acarology, 64(4), 445–454. https://doi.org/10.1007/s10493-014-9834-7
Núñez, Z. E. (2008). Plagas de paltos y cítricos en Perú. In R. S. P. Ripa (Ed.), Larral Manejo de plagas en paltos y cítricos (pp. 324–364). Instituto de Investigaciones Agropecuarias
Núñez, P. E., Iannacone, J., & Gómez, H. (2008). Efecto de dos hongos entomopatógenos en el control de Aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chilean Journal of Agricultural Research, 68(1), 21–30. https://doi.org/10.4067/S0718-58392008000100003
Petersson, J. (1970). An aphid sex attractant. Part 1. Biological Studies. Entomol Scand, 1, 63–73. https://doi.org/10.1163/187631270X00357
Pinto-Zevallos, D. M., Martins, C. B., Pellegrino, A. C., & Zarbin, P. H. (2013). Compostos orgânicos voláteis na defesa induzida das plantas contra insetos herbívoros. Química Nova, 36, 1395–1405. https://doi.org/10.1590/S0100-40422013000900021
Rajabaskar, D., Ding, H., Wu, Y., & Eigenbrode, S. D. (2013). Behavioral responses of green peach aphid, Myzus persicae (Sulzer), to the volatile organic compound emissions from four potato varieties. American Journal of Potato Research, 90(2), 171–178. https://doi.org/10.1007/s12230-012-9282-z
Robbins, P. S., Alessandro, R. T., Stelinski, L. L., & Lapointe, S. L. (2012). Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). The Florida Entomologist, 95(3), 774–776. https://doi.org/10.1653/024.095.0331
Saraiva, W. V. A., Dias-Pini, N. D. S., Innecco, R., Zocolo, G. J., Rodrigues, T. H. S., Rêgo, A. S., & Maciel, G. P. S. (2021). Toxic effects of an essential oils mixture on Aleurodicus cocois (Hemiptera: Aleyrodidae) and Chrysoperla externa (Neuroptera: Chrysopidae). Biocontrol Science and Technology, 31(5), 526–540. https://doi.org/10.1080/09583157.2020.1871468
Serrano, L. A. L., & Oliveira, V. D. (2013). Aspectos botânicos, fenologia e manejo da cultura do cajueiro. Agronegócio caju: práticas e inovações (pp. 77–175). Brasília
Saad, K. A., Roff, M. M., Hallett, R. H., & Idris, A. B. (2015). Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Scientific Reports, 5(1), 1–9. https://doi.org/10.1038/srep13697
Sacchetti, P., Rossi, E., Bellini, L., Vernieri, P., Cioni, P. L., & Flamini, G. (2015). Volatile organic compounds emitted by bottlebrush species affect the behaviour of the sweet potato whitefly. Arthropod-Plant Interactions, 9(4), 393–403. https://doi.org/10.1007/s11829-015-9382-z
Sadeh, D., Nitzan, N., Shachter, A., Chaimovitsh, D., Dudai, N., & Ghanim, M. (2017). Whitefly attraction to rosemary (Rosmarinus officinialis L.) is associated with volatile composition and quantity. PLoS One, 12(5), e0177483
SAS Institute Inc. (2018). SAS/STAT® 15.1 User’s Guide. SAS Institute Inc
Schlaeger, S., Pickett, J. A., & Birkett, M. A. (2018). Prospects for management of whitefly using plant semiochemicals, compared with related pests. Pest Management Science, 74(11), 2405–2411. https://doi.org/10.1002/ps.5058
Shi, X., Chen, G., Tian, L., Peng, Z., Xie, W., Wu, Q., & Zhang, Y. (2016). The salicylic acid-mediated release of plant volatiles affects the host choice of Bemisia tabaci. International Journal of Molecular Sciences, 17(7), 1048. https://doi.org/10.3390/ijms17071048
Splivallo, R., Valdez, N., Kirchhoff, N., Ona, M. C., Schmidt, J. P., Feussner, I., & Karlovsky, P. (2012). Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytologist, 194(3), 823–835. https://doi.org/10.1111/j.1469-8137.2012.04077.x
Togni, P. H., Laumann, R. A., Medeiros, M. A., & Sujii, E. R. (2010). Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomologia Experimentalis et Applicata, 136(2), 164–173. https://doi.org/10.1111/j.1570-7458.2010.01010.x
Tu, H., & Qin, Y. (2017). Repellent effects of different celery varieties in Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q. Journal of Economic Entomology, 110(3), 1307–1316. https://doi.org/10.1093/jee/tox110
Wanjiku, C., Khamis, F. M., Teal, P. E., & Torto, B. (2014). Plant volatiles influence the African weaver ant-cashew tree mutualism. Journal of Chemical Ecology, 40(11), 1167–1175. https://doi.org/10.1007/s10886-014-0512-3
Wason, E., & Hunter, M. (2014). Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia, 174(2), 479–491. https://doi.org/10.1007/s00442-013-2787-4
Zheng, L. X., Wu, W. J., & Fu, Y. G. (2014). ±)-2-Hexanol from Pterocarpus indicus leaves as attractant for female Aleurodicus dispersus (Hemiptera: Aleyrodidae). African Entomology, 22(2), 267–272. https://doi.org/10.4001/003.022.0224
Acknowledgements
We would like to thank the National Council for Scientific and Technological Development (CNPq) for a masters research scholarship to first autor.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saraiva, W.V.A., Dias-Pini, N.S., Alves Filho, E.G. et al. Attraction of whitefly Aleurodicus cocois mediated by cashew volatiles. Phytoparasitica 50, 399–410 (2022). https://doi.org/10.1007/s12600-021-00968-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12600-021-00968-y