Skip to main content

Advertisement

Log in

Paraquat resistance and hormetic response observed in Conyza sumatrensis (Retz.) E. Walker (tall fleabane) in Australian cotton cropping systems

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Herbicide resistance in weeds necessitates the continued monitoring of herbicide resistance evolution in weed species. This study investigated the level of paraquat resistance in two species of Conyza including Conyza sumatrensis (Retz.) E. Walker (tall fleabane) and Conyza bonariensis (L.) Cronquist (flaxleaf fleabane). Twenty-two biotypes of C. bonariensis and three biotypes of C. sumatrensis were screened for paraquat resistance evaluation. All tested biotypes of C. bonariensis were susceptible to paraquat at the recommended rate of 500 g a.i./ha. Whole plant dose–response assays showed that the two biotypes (TF-COLEA and TF-NANDI) of C. sumatrensis are resistant to the herbicide paraquat, with a ED50 more than fourfold that of the susceptible biotype (TF-TALWD). The two resistant biotypes also showed a hormetic growth increase at two lower doses (62.5 and 125 g a.i./ha) of paraquat, resulting in 31% and 17% higher biomass production at 62.5 g a.i./ha of paraquat, and 19% and 11% at 125 g a.i./ha of paraquat for the resistant biotypes TF-NANDI and TF-COLEA, respectively, than those of the untreated control. The two resistant biotypes at the two lower doses of paraquat generated 33% to 65% higher numbers of seed buds/plant in TF-COLEA and 40% to 68% in TF-NANDI compared to the untreated control. Such stimulatory responses to lower rates of paraquat can enhance the competitiveness of these resistant plants against neighboring weed and crop plants, potentially increasing the seedbank size of resistant biotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due to privacy act and IP policy but are available from the corresponding author on reasonable request.

Code availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Not applicable.

References

  • Beckie, H. J., & Reboud, X. (2009). Selecting for weed ressitaicne: Herbicide rotation and mixture. Weed Technology, 23, 363–370.

    Article  CAS  Google Scholar 

  • Belz, R. G., & Cedergreen, N. (2010). Parthenin hormesis in plants depends on growth conditions. Environmental and Experimental Botany, 69(3), 293–301.

    Article  CAS  Google Scholar 

  • Belz, R. G. (2014). Is hormesis an underestimated factor in the development of herbicide resistance? In 26th German conference on weed biology and weed control, (pp. 81–91). Braunschweig

  • Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707.

    Article  PubMed  CAS  Google Scholar 

  • Belz, R. G., & Duke, S. O. (2017). Herbicide-mediated hormesis. In S. O. Duke, P. Kudsk, & K. Solomon (Eds.), Pesticide dose: Effects on the environment and target and non target organisms (pp. 135–148). American Chemical Society.

    Chapter  Google Scholar 

  • Belz, R. G. (2018). Herbicide hormesis can act as a driver of resistance evolution in weeds - PSII-target site resistance in Chenopodium album L. as a case study. Pest Management Science, 74(12), 2874–2883.

    Article  PubMed  CAS  Google Scholar 

  • Borger, C. P., & Hashem, A. (2007). Evaluating the double knockdown technique: Sequence, application interval, and annual ryegrass growth stage. Australian Journal of Agricultural Research, 58(3), 265–271.

    Article  Google Scholar 

  • Brain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96.

    Article  Google Scholar 

  • Broster, J. C., Koetz, E., & Wu, H. (2011). Herbicide resistance levels in annual ryegrass (Lolium rigidum) in southern New South Wales. Plant Protection Quarterly, 26(1), 22–27.

    Google Scholar 

  • Burgos, N. R., Tranel, P. J., Streibig, J. C., Davis, V. M., Shaner, D., Norsworthy, J. K., et al. (2013). Review: Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science, 61(1), 4–20.

    Article  CAS  Google Scholar 

  • Calabrese, E. J. (2008). Hormesis: Why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry, 27(7), 1451–1474.

    Article  PubMed  CAS  Google Scholar 

  • Calabrese, E. J., & Baldwin, L. A. (2003). Hormesis: The dose-response revolution. Annual Review of Pharmacology and Toxicology, 43(1), 175–197.

    Article  PubMed  CAS  Google Scholar 

  • Cedergreen, N. (2008). Herbicides can stimulate plant growth. Weed Research, 48(5), 429–438.

    Article  CAS  Google Scholar 

  • Cedergreen, N., Felby, C., Porter, J. R., & Streibig, J. C. (2009). Chemical stress can increase crop yield. Field Crops Research, 114(1), 54–57.

    Article  Google Scholar 

  • Cedergreen, N., & Olesen, C. F. (2010). Can glyphosate stimulate photosynthesis? Pesticide Biochemistry and Physiology, 96(3), 140–148.

    Article  CAS  Google Scholar 

  • Chiang, Y. J., Wu, Y. X., Chiang, M. Y., & Wang, C. Y. (2008). Role of antioxidative system in paraquat resistance of tall fleabane (Conyza sumatrensis). Weed Science, 56(3), 350–355.

    Article  CAS  Google Scholar 

  • Chun, J. C., Ma, S. Y., Kim, S. E., & Lee, H. J. (1997). Physiological responses of Rehmannia glutinosa to paraquat and its tolerance mechanisms. Pesticide Biochemistry and Physiology, 59(1), 51–63.

    Article  CAS  Google Scholar 

  • Dalley, C. D., & Richard, E. P. (2010). Herbicides as ripeners for sugarcane. Weed Science, 58(3), 329–333.

    Article  CAS  Google Scholar 

  • Dragićević, M., Platiša, J., Nikolić, R., Todorović, S., Bogdanović, M., Mitić, N., et al. (2013). Herbicide phosphinothricin causes direct stimulation hormesis. Dose-Response, 11(3), 344–360.

    Article  Google Scholar 

  • Duke, S. O., Cedergreen, N., Venlini, E. D., & Belz, R. G. (2006). Hormesis: Is it an important factor in herbicide use and allelopathy? Outlooks on Pest Management, 17, 29–33.

    Google Scholar 

  • Ekmekci, Y., & Terzioglu, S. (2005). Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pesticide Biochemistry and Physiology, 83, 69–81.

    Article  CAS  Google Scholar 

  • Fuerst, E. P., & Vaughn, K. C. (1990). Mechanism of Paraquat Ressistance. Weed Technology, 4, 150–156.

    Article  Google Scholar 

  • Ge, X., d’Avignon, D. A., Ackerman, J. J. H., Duncan, B., Spaur, M. B., & Sammons, R. D. (2011). Glyphosate-resistant horseweed made sensitive to glyphosate: Low-temperature suppression of glyphosate vacuolar sequestration revealed by 31 P NMR. Pest Management Science, 67(10), 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  • Ghanizadeh, H., Harrington, K. C., James, T. K., & Woolley, D. J. (2013). Confirmation of glyphosate resistance in two species of ryegrass from New Zealand vineyards. New Zealand Plant Protection, 66, 89–93.

    Article  CAS  Google Scholar 

  • Hanioka, Y. (1989). Paraquat-resistant biotype of Erigeron sumatrensis Retz. in mulberry fields in saitama prefecture. Journal of Weed Science and Technology, 34(3), 210–214.

    Article  Google Scholar 

  • Heap, I. (2021). The international survey of herbicide resistant weeds. www.weedscience. Accessed 10 May 2021

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

  • Iturbe-Ormaetxe, I., Escuredo, P. R., Arrese-lgor, C., & Becana, M. (1998). Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiology, 116, 173–181.

    Article  PubMed Central  CAS  Google Scholar 

  • Kuk, Y. I., Shin, J. S., Jung, H. I., Guh, J. O., Jung, S., & Burgos, N. R. (2006). Mechanism of paraquat tolerance in cucumber leaves of various ages. Weed Science, 54, 6–15.

    Article  CAS  Google Scholar 

  • Llewellyn, R. S., & Powles, S. B. (2001). High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of Western Australia. Weed Technology, 15(2), 242–248.

    Article  CAS  Google Scholar 

  • Manalil, S. (2014). Evolution of herbicide resistance in Lolium rigidum under low rates: An Australiana experience. Crop Science, 54, 461–474.

    Article  Google Scholar 

  • Moretti, M. L., Hanson, B. D., Hembree, K. J., & Shrestha, A. (2013). Glyphosate resistance is more variable than paraquat resistance in a multiple-resistant hairy fleabane (Conyza bonariensis) biotype. Weed Science, 61(3), 396–402.

    Article  CAS  Google Scholar 

  • Mushak, P. (2013). How prevalent is chemical hormesis in the natural and experimental worlds? Science of the Total Environment, 443, 573–581.

    Article  CAS  Google Scholar 

  • Nascentes, R. F., Carbonari, C. A., Simões, P. S., Brunelli, M. C., Velini, E. D., & Duke, S. O. (2018). Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus. Pest Management Science, 74(5), 1197–1205.

    Article  PubMed  CAS  Google Scholar 

  • Pölös, E., Mikulás, J., Szigeti, Z., Matkovics, B., Do Quy, H., Párducz, Á., et al. (1988). Paraquat and atrazine co-resistance in Conyza canadensis (L.) Cronq. Pesticide Biochemistry and Physiology, 30(2), 142–154.

    Article  Google Scholar 

  • Pruski, J. F., & Sancho, G. (2006). Conyza sumatrensis var. leiotheca (Compositae: Astereae), a new combination for a common neo-tropical weed. Novon: A Journal for Botanical Nomenclature, 16(1), 96–101.

    Article  Google Scholar 

  • Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS One, 10(12), e0146021.

    Article  PubMed  PubMed Central  Google Scholar 

  • RStudio. (2020). RStudio: integrated development environment for R (Version 121335). RStudio Inc.

    Google Scholar 

  • Silva, F. M. L., Duke, S. O., Dayan, F. E., & Velini, E. D. (2016). Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Research, 56(2), 124–136.

    Article  CAS  Google Scholar 

  • Seefeldt, S. S., Jensen, S. E., & Fuerst, E. P. (1995). Log-logistic analysis of herbicide dose-response relationship. Weed Technology, 9, 218–227.

    Article  Google Scholar 

  • Suntres, Z. E. (2002). Role of antioxidants in paraquat toxicity. Toxicology, 180, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Szigeti, Z., & Lehoczki, E. (2003). A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Management Sceince, 59, 451–458.

    Article  CAS  Google Scholar 

  • Thébaud, C., & Abbott, R. J. (1995). Characterization of invasive Conyza species (Asteraceae) in Europe: Quantitative trait and isozyme analysis. American Journal of Botany, 82(3), 360–368.

    Article  Google Scholar 

  • Váradi, G., Darkó, E., & Lehoczki, E. (2000). Changes in the xanthophyll cycle and fluorescence quenching indicate light-dependent early events in the action of paraquat and the mechanism of resistance to paraquat in Erigeron canadensis (L.) cronq. Plant Physiology, 123(4), 1459–1470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartak, V., & Bhargava, S. (1999). Photosynthetic performance and antioxidant metabolism in a paraquat-resistant mutant of Chlamydomonasreinhardtii L. Pestic. Pesticide Biochemistry and Physiology, 64, 9–15.

    Article  CAS  Google Scholar 

  • Vaughn, K. C., & Fuerst, E. P. (1985). Structural and physiological studies of paraquat-resistant Conyza. Pesticide Biochemistry and Physiology, 24(1), 86–94.

    Article  CAS  Google Scholar 

  • Vladimirov, V. (2009). Erigeron sumatrensis (Asteraceae): A recently recognized alien species in the Bulgarian flora. Phytologia Balcantica, 15(3), 361–365.

    Google Scholar 

  • Walker, S., Bell, K., Robinson, G., & Widderick, M. (2011). Flaxleaf fleabane (Conyza bonariensis) biotypes have developed glyphosate resistance in north-east Australian cropping fields. Crop Protection, 30(3), 311–317.

    Article  CAS  Google Scholar 

  • Werth, J., Walker, S., Boucher, L., & Robinson, G. (2010). Applying the double knock technique to control Conyza bonariensis. Weed Biology and Management, 10(1), 1–8.

    Article  CAS  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.

    Book  Google Scholar 

  • Widderick, M., Cook, T., Mclean, A., Churchett, J., Keenan, M., Miller, B., et al. (2014). Improved management of key northern region weeds: Diverse problems, diverse solutions. In M. Baker (Ed.), 19th Australasian weeds conference: Science, community and food security: The weed challenge (pp. 312–315). Tasmanian Weed Society.

    Google Scholar 

  • Zhang, Z. H., Weaver, S. E., & Hamill, A. S. (2000). Risks and reliability of using herbicides at below-labeled rates. Weed Technology, 14, 106–115.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge funding from the Cotton Research Development Corporation (CRDC) and NSW Department of Primary Industries, Australia.

Funding

This study was funded by the Cotton Research and Development Corporation, and NSW Department of Primary Industries, NSW.

Author information

Authors and Affiliations

Authors

Contributions

Md Asaduzzaman: Conceptualisation, Methodology, Investigation, Writing- Original draft preparation, Writing- Reviewing and Editing. Eric Koetz: Mentoring, Funding acquisition, Formal analysis, Reviewing and Editing. Hanwen Wu: Mentoring, Reviewing and Editing and Adam Shephard: Investigation.

Corresponding author

Correspondence to Md Asaduzzaman.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaduzzaman, M., Koetz, E., Wu, H. et al. Paraquat resistance and hormetic response observed in Conyza sumatrensis (Retz.) E. Walker (tall fleabane) in Australian cotton cropping systems. Phytoparasitica 50, 269–279 (2022). https://doi.org/10.1007/s12600-021-00956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00956-2

Keywords