Skip to main content
Log in

A Photorhabdus akhurstii toxin altered gut homeostasis prior conferring cytotoxicity in Spodoptera frugiperda, S. litura and Helicoverpa armigera

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The nematode-bacterium pair Heterorhabditis indica-Photorhabdus akhurstii is a model system to study symbiotic associations. Upon introduction into the host hemocoel by its nematode partner, the bacterium produces a number of toxins which kill the insect. Nevertheless, unlike Bt toxins majority of Photorhabdus toxins are not orally active which hinders their commercial exploitation as insect biological control agent. In the present study, an orally active 63 kDa protein, TcaB (derived from P. akhurstii strains IARI-SGHR2 and IARI-SGMS1), was investigated for its biological activity against agriculturally important insects including Spodoptera frugiperda, S. litura and Helicoverpa armigera. A force feeding-based oral administration of TcaB exhibited LD50 values of 92.25–105.5, 145.4–156.6 and 190.75–200.75 ng/g in S. frugiperda, S. litura and H. armigera, respectively, which was comparable with the injection LD50 values of 80.5–95.75, 138.6–150.4 and 186–197 ng/g. An oral delivery of 500 ng TcaB caused a continual disintegration of midgut architecture in S. frugiperda, S. litura and H. armigera over 12 to 48 h incubation period putatively leading to escape of TcaB into the hemocoel. Simultaneously, alike of intra-hemocoel injection effect, TcaB oral delivery caused cytotoxicity and immune-stimulatory effect in the hemocoel of all the test insects during 12 to 48 h after inoculation, supporting our hypothesis. The circulatory hemocyte numbers and cell viability was considerably reduced in the TcaB-inoculated larvae compared to control. In parallel, the hemolymph phenoloxidase activity was elevated by manifold in the toxin-treated insects. In silico docking analyses suggested that TcaB interacts with a number of S. frugiperda, S. litura and H. armigera receptor proteins in order to become a gut-active toxin. Current study describes the potential of orally-active Photorhabdus toxins as an alternative to Bt and fortifies the existing pest management tactics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd El-Aziz, N. M., & Awad, H. H. (2010). Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41, 203–209.

    Article  CAS  Google Scholar 

  • Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In T. S. Dhadialla & S. S. Gill (Eds.), Advances in insect physiology: Insect midgut and insecticidal proteins (Vol. 47, pp. 39–87). Elsevier.

    Chapter  Google Scholar 

  • Ayres, J. S., & Schneider, D. S. (2008). A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biology, 6, 2764–2773.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, M., Golubeva, E., Bowen, D., & ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, Toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environment Microbiology, 64, 3036–3041.

    Article  CAS  Google Scholar 

  • Blackburn, M. B., Domek, J. M., Gelman, D. B., & Hu, J. S. (2005). The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia Tabaci. Journal of Insect Science, 5, 1.

    Article  Google Scholar 

  • Broderick, N. A., Raffa, K. F., & Handelsman, J. (2010). Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiology, 10, 129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, S. E., Cao, A. T., Dobson, P., Hines, E. R., Akhurst, R. J., & East, P. D. (2006). Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Applied and Environment Microbiology, 72, 1653–1662.

    Article  CAS  Google Scholar 

  • Carrière, Y., Brown, Z. S., Downes, S. J., Gujar, G., Epstein, G., Omoto, C., et al. (2019). Governing evolution: A socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio, 49, 1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro, BMd. Ce., Martinez, L. C., Barbosa, S. G., et al. (2019). Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Science and Reports, 9, 6667.

    Article  CAS  Google Scholar 

  • Cerenius, L., Lee, B. L., & Soderhall, K. (2008). The proPO-system: Pros and cons for its role in invertebrate immunity. Trends in Immunology, 29, 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Liu, H., Mo, B.-C., Hu, J., Liu, S.-Q., Bustos-Segura, C., et al. (2020). Growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae infected by Heliothis virescens ascovirus 3i (HvAV-3i). Frontiers in Physiology, 11, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, T., Wu, J., Wu, Y., Chilukuri, R. V., Huang, L., Yamamoto, K., et al. (2017). Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nature Ecology & Evolution , 1, 1747–1756.

    Article  Google Scholar 

  • Clarke, D. J. (2020). Photorhabdus: A tale of contrasting interactions. Microbiology. https://doi.org/10.1099/mic.0.000907

    Article  PubMed  Google Scholar 

  • Coates, C. J., Lim, J., Harman, K., Rowley, A. F., Griffiths, D. J., Emery, H., & Layton, W. (2019). The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biology and Toxicology, 35, 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Donald, J. E., Kulp, D. W., & DeGrado, W. F. (2011). Salt bridges: Geometrically specific, designable interactions. Proteins, 79, 898–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, T. K., Lovegrove, A., Gaur, H. S., & Curtis, R. H. (2014). Differential immunoreactivity of the root-knot nematodes, Meloidogyne graminicola and Meloidogyne incognita to polyclonal and monoclonal antibodies and identification of antigens through proteomics approach. African Journal of Microbiology Research, 8, 1245–1254.

    Article  CAS  Google Scholar 

  • Dutta, T. K., Mathur, C., Mandal, A., & Somvanshi, V. S. (2020). The differential strain virulence of the candidate toxins of Photorhabdus akhurstii can be correlated with their inter-strain gene sequence diversity. 3 Biotech, 10, 299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery, H., Johnston, R., Rowley, A. F., & Coates, C. J. (2019). Indomethacin-induced gut damage in a surrogate insect model, Galleria mellonella. Archives of Toxicology, 93, 2347–2360.

    Article  CAS  PubMed  Google Scholar 

  • Ericsson, J. D., Janmaat, A. F., Lowenberger, C., & Myers, J. H. (2009). Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni? Journal of Invertebrate Pathology, 100, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Fabrick, J. A., Mathew, L. G., LeRoy, D. M., Hull, J. J., Unnithan, G. C., Yelich, A. J., et al. (2019). Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Management Science, 76, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant, R. H., & Dowling, A. (2014). Photorhabdus toxins. In T. S. Dhadialla & S. S. Gill (Eds.), Advances in insect physiology: Insect midgut and insecticidal proteins (Vol. 47, pp. 343–388). Elsevier.

    Chapter  Google Scholar 

  • Garcia-del-Pino, F., Morton, A., & Shapiro-Ilan, D. (2018). Entomopathogenic nematodes as biological control agents of tomato pests. In W. Wakil, G. E. Brust, & T. M. Perring (Eds.), Sustainable management of arthropod pests of tomato (pp. 269–282). Academic.

    Chapter  Google Scholar 

  • Gillespie, J. P., Kanost, M. R., & Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643.

    Article  CAS  PubMed  Google Scholar 

  • Grizanova, E. V., Dubovskiy, I. M., Whitten, M. M. A., & Glupov, V. V. (2014). Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. Journal of Invertebrate Pathology, 119, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Fatig, R. O., Orr, G. L., Schafer, B. W., Strickland, J. A., Sukhapinda, K., et al. (1999). Photorhabdus luminescens W-14 insecticidal activity consists of at least two similar but distinct proteins. Purification and characterization of toxin A and toxin B. Journal of Biological Chemistry, 274, 9836–9842.

    Article  CAS  Google Scholar 

  • Guo, S., Herzig, V., & King, G. F. (2018). Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins. Toxicon, 150, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., Kain, W., & Wang, P. (2019). Effects of disruption of the peritrophic membrane on larval susceptibility to Bt toxin Cry1Ac in cabbage loopers. Journal of Insect Physiology, 117, 103897.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, B. (2010). Integrating the cell stress response: A new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochemistry and Function, 28, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda, D., & Gray, J. J. (2016). Shape complementarity and hydrogen bond preferences in protein-protein interfaces: Implications for antibody modeling and protein-protein docking. Bioinformatics, 32, 2451–2456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, S., & Kim, Y. (2007). Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponoineutidae). Biological Control, 42, 72–76.

    Article  CAS  Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., et al. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Burton, S., Glancy, T., Li, Z. S., Hampton, R., Meade, T., & Merlo, D. J. (2003). Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nature Biotechnology, 21, 1222–1228.

    Article  CAS  PubMed  Google Scholar 

  • Ma, G., Sarjan, M., Preston, C., Asgari, S., & Schmidt, O. (2005). Mechanisms of inducible resistance against Bacillus thuringiensis endotoxins in invertebrates. Insect Science, 12, 319–330.

    Article  CAS  Google Scholar 

  • Manachini, B., Arizza, V., Parrinello, D., & Parrinello, N. (2011). Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Journal of Invertebrate Pathology, 106, 360–365.

    Article  PubMed  Google Scholar 

  • Mathur, C., Kushwah, J., Somvanshi, V. S., & Dutta, T. K. (2018). A 37 kDa Txp40 protein characterized from Photorhabdus luminescens sub sp. akhurstii conferred injectable and oral toxicity to greater wax moth, Galleria mellonella. Toxicon, 154, 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Mathur, C., Phani, V., Kushwah, J., Somvanshi, V. S., & Dutta, T. K. (2019). TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. Pesticide Biochemistry and Physiology, 157, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M. M., Roberts, H. L. S., Sarjan, M., Asgari, S., & Schmidt, O. (2004). Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proceedings of the National Academy of Sciences of the United States of America, 101, 2696–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, E. H., & Dani, M. P. (2010). A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis. Journal of Invertebrate Pathology, 104, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Sajnaga, E., & Kazimierczak, W. (2020). Evolution and taxonomy of nematode-associated entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus: An overview. Symbiosis, 80, 1–13.

    Article  CAS  Google Scholar 

  • Santhoshkumar, K., Mathur, C., Mandal, A., & Dutta, T. K. (2020). A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Microbiological Research, 242, 126642.

    Article  PubMed  CAS  Google Scholar 

  • Shankhu, P. Y., Mathur, C., Mandal, A., Sagar, D., Somvanshi, V. S., & Dutta, T. K. (2020). Txp40, a protein from Photorhabdus akhurstii conferred potent insecticidal activity against the larvae of Helicoverpa armigera, Spodoptera litura and S. exigua. Pest Management Science, 76, 2004–2014.

    Article  CAS  PubMed  Google Scholar 

  • Sheets, J., & Aktories, K. (2017). Insecticidal toxin complexes from Photorhabdus luminescens. In R. H. ffrench-Constant (Ed.), The molecular biology of Photorhabdus bacteria (pp. 3–24). Springer.

    Google Scholar 

  • Suby, S. B., Soujanya, P. L., Yadava, P., Patil, J., Subaharan, K., Prasad, G. S., et al. (2020). Invasion of fall armyworm (Spodoptera frugiperda) in India: Nature, distribution, management and potential impact. Current Science, 119, 44–51.

    Article  Google Scholar 

  • Tabashnik, B. E. (2015). ABCs of insect resistance to Bt. PLoS Genetics, 11, e1005646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabashnik, B. E., & Carrière, Y. (2017). Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 35, 926–935.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Ma, H., Zhao, S., Huang, J., Yang, Y., Tabashnik, B. E., & Wu, Y. (2020). Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathogens, 16, e1008427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterfield, N. R., Hares, M., Yang, G., Dowling, A., & ffrench-Constant, R. (2005). Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cellular Microbiology, 7(373), 382.

    Google Scholar 

  • Whitten, M. M., & Coates, C. J. (2017). Re-evaluation of insect melanogenesis research: Views from the dark side. Pigment Cell & Melanoma Research, 30, 386–401.

    Article  CAS  Google Scholar 

  • Yang, G., & Waterfield, N. R. (2013). The role of TcdB and TccC subunits in secretion of the Photorhabdus Tcd toxin complex. PLoS Pathogens, 9, e1003644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Present research was funded by the Science and Engineering Research Board (SERB)-Department of Science and Technology (DST), Government of India (Project code: YSS/2014/000452). M.Sc. student KS acknowledges Post Graduate School, ICAR-IARI. We sincerely thank Dr. Vishal Somvanshi, Senior Scientist, ICAR-IARI for providing us the bacterial strains.

Author information

Authors and Affiliations

Authors

Contributions

TKD and KS performed all the experiments. AM performed bioinformatics analyses. DS helped in insect rearing. TKD conceptualized the experiments, wrote the draft and performed statistical analyses.

Corresponding author

Correspondence to Tushar K. Dutta.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals.

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1795 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, T.K., Santhoshkumar, K., Mathur, C. et al. A Photorhabdus akhurstii toxin altered gut homeostasis prior conferring cytotoxicity in Spodoptera frugiperda, S. litura and Helicoverpa armigera. Phytoparasitica 49, 943–958 (2021). https://doi.org/10.1007/s12600-021-00941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00941-9

Keywords

Navigation