Skip to main content

Abundance and diversity of arthropods in transgenic Bt and non-Bt cotton fields under Indian conditions

Abstract

Two-year field studies during Kharif 2015 and 2016 were conducted to assess the abundance and diversity of arthropod communities of Bt cotton carrying Cry1Ac and Cry2Ab proteins and non-Bt cotton under sprayed and unsprayed conditions. The experiment was conducted in a randomized block design with four treatments of BG-II and non-Bt cotton. The treatments were non- transgenic cotton with no insecticide treatment, non-transgenic cotton with insecticide treatment, transgenic cotton with no insecticide treatment and transgenic cotton with an insecticide treatment. Arthropod community categorized as target insect pests, sucking insect pests, natural enemies and non-target insects were recorded at different phases of the cotton crop. The sucking insect pests contributed the highest abundance among the total arthropods recorded during the period of study. The abundance and diversity of bollworms that were recorded from non-Bt cotton only suggested effectiveness of BG II cotton against target insect pests. The abundance, species richness and diversity indices with respect to populations of beneficial predaceous arthropods and non-target insects were similar in BG-II and its non-Bt counterpart under unsprayed conditions. On the contrary, these parameters were significantly on the lower side under sprayed regimes for both genotypes. The spray of insecticides in early season against sucking insect pests significantly reduced their abundance and diversity indices in both BGII and non-Bt cotton. As monocropping of BG-II cotton is common on large parts of India, there is a need to monitor the populations of non-target insect species with special emphasis on sucking insect pests on a continuous basis to understand the long-term impact of Bt crops on insect biodiversity for sustainable integrated pest management practices.

This is a preview of subscription content, access via your institution.

References

  • AICCIP (2016). Annual report (2015-16).ICAR-all India coordinated cotton improvement project, 1-15, central Institute for Cotton Research, Regional Station, Coimbatore.

  • Albajes, R., Lumbierres, B., & Pons, X. (2009). Responsiveness of arthropod herbivores and their natural enemies to modified weed management in corn. Environmental Entomology, 38, 944–954.

    PubMed  Article  Google Scholar 

  • Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196–214.

    CAS  PubMed  Article  Google Scholar 

  • Anonymous. (2016). Package of practices for Kharif crops, 39–57. Ludhiana: Punjab Agricultural University.

    Google Scholar 

  • Arshad, M., Arif, M. J., Gogi, M. D., Rehman, M. A., Wakil, W., & Saeed, N. A. (2014). Seasonal abundance of non-target natural enemies in transgenic Bt and conventional cotton. Pakistan Entomologist, 36, 115–118.

    Google Scholar 

  • Atta, B., Mustafa, F., Adil, M., Raza, M. F., & Farooq, M. A. (2015). Impact of different transgenic and conventional cotton cultivars on population dynamics of whitefly, Bemisia tabaci. Advances in Zoology Botany, 3, 175–178.

    Article  Google Scholar 

  • Bal, H. K. (2007). Effect of transgenic cotton on diversity of arthropod community in cotton agroecosystem- m.Sc. Thesis, Punjab Agricultural University, Ludhiana, India.

  • Berge, J. B., & Ricroch, A. E. (2010). Emergence of minor pests becoming major pests in GE cotton in China: What are the reasons? What are the alternatives practices to this change of status? GM Crops, 1, 214–219.

    PubMed  Article  Google Scholar 

  • Cannon, R. J. C. (2000). Bt transgenic crops: Risks and benefits. Integrated Pest Management Review, 5, 151–173.

    Article  Google Scholar 

  • Carriere, Y., Ellers-Kirk, C., Sisterson, M., Antilla, L., Whitlow, M., Dennehy, T. J., & Tabashnik, B. E. (2003). Long-term regional suppression of target pests with Bt crops. Proceedings of the National Academy of Sciences United States of America, 100, 1519–1523.

    CAS  Article  Google Scholar 

  • Carrière, Y., Crickmore, N., & Tabashnik, B. E. (2015). Optimizing pyramided transgenic Bt crops for sustainable pest management. National Biotechnology, 33, 161–168.

    Article  CAS  Google Scholar 

  • Cheli, G. H., & Corley, J. C. (2010). Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotropical Entomology, 39, 912–917.

    PubMed  Article  Google Scholar 

  • Conner, A. J., Glare, T. R., & Nap, J. P. (2003). The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. The Plant Journal, 33, 19–46.

    PubMed  Article  Google Scholar 

  • Dhillon, M. K., & Sharma, H. C. (2009). Impact of Bt-engineered cotton on target and non-target arthropods, toxin flow through different trophic levels and seed cotton yield. Karnataka Journal of Agricultural Science, 22, 462–466.

    Google Scholar 

  • Dhillon, M. K., & Sharma, H. C. (2013). Comparative studies on the effects of Bt-transgenic and non-transgenic cotton on arthropod diversity, seed cotton yield and bollworms control. Journal of Environmental Biology, 34, 67–73.

    CAS  PubMed  Google Scholar 

  • Dhurua, S., & Gujar, G. T. (2011). Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Management Science, 67, 898–903.

    CAS  PubMed  Article  Google Scholar 

  • Dutton, A., Klein, H., Romeis, J., & Bigler, F. (2002). Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology, 27, 441–447.

    Article  Google Scholar 

  • Flint, H. M., Henneberry, T. J., Wilson, F. D., Holguin, E., Parks, N., & Buehler, R. E. (1995). The effects of transgenic cotton, Gossypium hirsutum L, containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella (Saunders) Lepidoptera: Gelechiidae and other arthropods. Southwest Entomology, 20, 281–292.

    Google Scholar 

  • Gross, K., & Rosenheim, J. A. (2011). Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecological Applications, 21, 2770–2780.

    PubMed  Article  Google Scholar 

  • Hargreaves, H. (1948). List of recorded insects in the world, 50, Harrison and sons, Commonwealth Institute of Entomology, London.

  • Head, G., Moar, W., Eubanks, M., Freeman, B., Ruberson, J., Hagerty, A., & Turnipseed, S. (2005). A multiyear, large-scale comparison of arthropod populations on commercially managed Bt and non-Bt cotton fields. Environmental Entomology, 34, 1257–1266.

    Google Scholar 

  • Kranthi, K. R., Jadhav, D. R., Kranthi, S., Wanjari, R. R., & Ali, S. S. (2002). Insecticide resistance in five major insect pests of cotton in India. Crop Protection, 21, 449–460.

    CAS  Article  Google Scholar 

  • Kranthi, K. R. (2015). Cotton statistics and news. Cotton Association of India, Mumbai, 23.

  • Kumar, R., Tian, J. C., Naranjo, S. E., & Shelton, A. M. (2014). Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 107, 927–932.

    PubMed  Article  Google Scholar 

  • Lawrence, L., Whitehouse, M., Wilson, L., & Fitt, G. (2005). Comparing invertebrate communities in transgenic Bt and conventional cotton. Outlooks of Pest Management, 16, 193–240.

    Google Scholar 

  • Lawo, N. C., Wackers, F. L., & Romies, J. (2009). Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One, 4, 1–9.

    Article  CAS  Google Scholar 

  • Li, W. D., Wu, K. M., Chen, X. X., Feng, H. Q., Xu, G., & Guo, Y. Y. (2004). Effects of transgenic cotton carrying Cry1A-CpTI and Cry1Ac genes on the structure and compositions of pest and beneficial arthropod communities in cotton fields in North China. Chinese Journal of Agriculture Biotechnology, 1, 17–21.

    CAS  Article  Google Scholar 

  • Lovei, G. L., & Arpaia, S. (2005). The impact of transgenic plants on natural enemies: A critical review of laboratory studies. Entomologia Experimentalis Applicata, 114, 1–114.

    Article  Google Scholar 

  • Lu, Y., Wu, K., Jiang, Y., Xia, B., Li, P., Feng, H., Wyckhuys, K. A. G., & Guo, Y. (2010). Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 328, 1151–1154.

    CAS  PubMed  Article  Google Scholar 

  • Mascarenhas, V. J., & Luttrell, R. G. (1997). Combined effect of sublethal exposure to cotton expressing the endotoxin protein of Bacillus thuringiensis and natural enemies on survival of bollworm (Lepidoptera: Noctuidae) larvae. Environmental Entomology, 26, 939–945.

    Article  Google Scholar 

  • Mellet, M. A., & Schoeman, A. S. (2007). Effect of Bt cotton on chrysopids, ladybird beetles and their prey: Aphids and whiteflies. Indian Journal of Experimental Biology, 45, 554–562.

    CAS  PubMed  Google Scholar 

  • Menhinick, E. F. (1964). A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology, 45, 859–861.

    Article  Google Scholar 

  • Men, X., Ge, F., Liu, X., & Yardim, E. N. (2003). Diversity of arthropod communities in transgenic Bt cotton and non transgenic cotton agroecosystems. Environmental Entomology, 32, 270–275.

    CAS  Article  Google Scholar 

  • Nagrare, V., Kranthi, S., Biradar, V., Zade, N., Sangode, V., Kakde, G., Shukla, R., Shivare, D., Khadi, B., & Kranthi, K. (2009). Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India. Bulletin of Entomological Research, 99, 537–541.

    CAS  PubMed  Article  Google Scholar 

  • Naranjo, S. E., Hagler, J. R., & Ellsworth, P. C. (2003). Improved conservation of natural enemies with selective management systems for Bemisia tabaci (Homoptera: Aleyrodidae) in cotton. Biocontrol Science and Technology, 13, 571–587.

    Article  Google Scholar 

  • Naranjo, S. E. (2005). Long-term assessment of the effects of transgenic Bt cotton on the abundance of non target arthropod natural enemies. Environmental Entomology, 34, 1193–1210.

    Article  Google Scholar 

  • Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7, 1–15.

    Article  CAS  Google Scholar 

  • Pemsl, D. E., Voelker, M., Wu, L., & Waibel, H. (2011). Long-term impact of Bt cotton: Findings from a case study in China using panel data. International Journal of Agricultural Sustainability, 9, 508–521.

    Article  Google Scholar 

  • Perlak, F. J., Oppenhuizen, M., Gustafson, K., Voth, R., Sivasupramaniam, S., Heering, D., Carey, B., Ihrig, R. A., & Roberts, J. K. (2001). Development and commercial use of Bollgard cotton in the USA-early promises versus today’s reality. Plant Journal, 27, 489–501.

    CAS  Article  Google Scholar 

  • Phulse, V. B., & Udikeri, S. S. (2014). Seasonal incidence of sucking insect pests and predatory arthropods in desi and Bt transgenic cotton. Karnataka Journal of Agricultural Science, 27, 28–31.

    Google Scholar 

  • Pielou, E. J. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144.

    Article  Google Scholar 

  • Qaim, M. (2003). Bt cotton in India- field trial results and economic projections. World Development, 31, 2115–2127.

    Article  Google Scholar 

  • Ramaswami, B., Pray, C. E., & Lalitha, N. (2012). The spread of illegal transgenic cotton varieties in India: Biosafety regulation, monopoly, and enforcement. World Devlopment, 40, 177–188.

    Article  Google Scholar 

  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biological-control agents: Theory and evidence. Biological Control, 5, 303–335.

    Article  Google Scholar 

  • Sanvido, O., Romeis, J., Gathmann, A., Gielkens, M., Raybould, A., & Bigler, F. (2012). Evaluating environmental risks of genetically modified crops: Ecological harm criteria for regulatory decision-making. Environment Science Policy, 15, 82–91.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication, 117. Urbana: University of Illinois Press.

    Google Scholar 

  • Stone, G. D. (2011). Field versus farm in Warangal: Bt cotton, higher yields, and larger questions. World Development, 39, 387–398.

    Article  Google Scholar 

  • Southwood, T. R. E. (1978). Ecological methods with particular reference to the study of insect populations. London: The English Language Book Society and Chapmann and Hall.

    Google Scholar 

  • SPSS Inc. Released (2007). SPSS for windows, version 16.0, Chicago, SPSS Inc.

  • Thomazoni, D., Paulo, E. D., Pierre, J. S., & Odivial, F. (2010). Impact of bollguard modified cotton on the biodiversity of arthropods under practical field conditions in Brazil. African Journal of Biotechnology, 9, 6167–6176.

    Google Scholar 

  • Torres, J. B., & Ruberson, J. R. (2007). Abundance and diversity of ground dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields. Annals of Applied Biology, 150, 27–39.

    Article  Google Scholar 

  • USDA (2018) World agricultural production, 1–18, United States Department of Agriculture.

  • Venilla, S. (2008). Pest management for cotton ecosystem or ecosystem management for cotton production. Current Science, 94, 1351–1352.

    Google Scholar 

  • Wadhwa, S., & Gill, R. S. (2007). Effect of Bt-cotton on biodiversity of natural enemies. Journal of Biological Control, 21, 9–16.

    Google Scholar 

  • Whitehouse, M. E. A., Wilson, L. J., & Fitt, G. P. (2005). A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environmental Entomology, 34, 1224–1241.

    Article  Google Scholar 

  • Wilson, W. D., Flint, H. M., Deaton, R. W., Fischhoff, D. A., Perlek, F. J., Armstrong, T. A., Fuchs, R. L., Berberich, S. A., Parks, N. J., & Stapp, B. R. (1992). Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. Journal of Economic Entomology, 85, 1516–1521.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Entomology, Punjab Agricultural University, Ludhiana for providing necessary facilities and the technical staff at the Entomological Research Farm for providing help during the course of these investigations. The authors also acknowledge  Dr. Sumedha Bhandari, Assistant Professor of English, Department of Agricultural Journalism, Languages & Culture, PAU, Ludhiana for her valuable comments and English language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Kaur.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of Interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Aggarwal, N. & Kular, J.S. Abundance and diversity of arthropods in transgenic Bt and non-Bt cotton fields under Indian conditions. Phytoparasitica 49, 61–72 (2021). https://doi.org/10.1007/s12600-020-00874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00874-9

Keywords

  • Cry toxins
  • Non-target insects
  • Species richness
  • Sucking insects
  • Transgenic plants