Abstract
Root and crown rot (RCR) caused by Phytophthora capsici is present in all crop production areas of pepper and chili worldwide. This pathogen was recently reported at the Pacific coast of Ecuador (province of Manabí), as an etiological agent of wilt and root and crown rot in commercial fields of bell pepper (Capsicum annuum). This study aimed to evaluate the resistance of ten Capsicum spp. genotypes artificially infected with P. capsici and to compare the tissue-specific colonization of P. capsici under greenhouse conditions. Disease intensity, mycelial growth incidence and pathogen DNA content in root and hypocotyl tissues of P. capsici infected Capsicum germplasm was evaluated at 17 days after infection (dai). Results indicated that genotypes Nathalie, ECU-12831, ECU-9129, Código 5, and ECU-1296 were found to be resistant, and ECU-11995, ECU-2254 B, California Wonder, Quetzal and Marcato showed susceptibility to the disease. The amount of pathogen DNA in roots was the only variable that did not correlate with the resistance or susceptibility of the genotypes. In fact, in resistant genotypes the pattern of pathogen DNA content was higher in roots than hypocotyls (but also in the susceptible ECU-11995), while in the susceptible genotypes (e.g. ECU-2254 B, C. Wonder, Quetzal and Marcato) showed the opposite pattern. The present work provides new insights of host-pathogen interaction, which might be used in breeding programs aiming to develop Capsicum cultivars with resistance to RCR.
This is a preview of subscription content, access via your institution.





References
Ares, J. L. A., Rivera, A., & Fernández, J. (2005). Resistance of pepper germplasm to Phytophthora capsici isolates collected in Northwest Spain. Spanish Journal of Agricultural Research, 3(4), 429–436. https://doi.org/10.5424/sjar/2005034-170.
Barksdale, T. H., Papavizas, G. C., & Johnston, S. A. (1984). Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Disease, 68, 506–509. https://doi.org/10.1094/PD-68-506.
Candole, B. L., Conner, P. J., McGregor, C., Waters, V., & Ji, P. (2012). The disease reactions of heirloom bell pepper “California wonder” to Phytophthora capsici. Agricultural Sciences, 3, 417–424. https://doi.org/10.4236/as.2012.33049.
Dunn, A. R., & Smart, C. D. (2015). Interactions of Phytophthora capsici with resistant and susceptible pepper roots and stems. Phytopathology, 105, 1355–1361. https://doi.org/10.1094/PHYTO-02-15-0045-R.
Dunn, A. R., Fry, B. A., Lee, T. Y., Conley, K. D., Balaji, V., Fry, W. E., McLeod, A., & Smart, C. D. (2013). Transformation of Phytophthora capsici with genes for green and red fluorescent protein for use in visualizing plant-pathogen interactions. Australasian Plant Pathology, 42, 583–593. https://doi.org/10.1007/s13313-013-0222-2.
Egea, C., Pérez, M. D. G., & Candela, M. E. (1996). Capsidiol accumulation in Capsicum annuum stems during the hypersensitive reaction to Phytophthora capsici. Journal of Plant Physiology, 149, 762–764. https://doi.org/10.1016/S0176-1617(96)80104-0.
Ettenauer, J., Piñar, G., Tafer, H., & Sterflinger, K. (2014). Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. Frontiers in Microbiology, 262. https://doi.org/10.3389/fmicb.2014.00262.
Feng, B. Z., & Li, P. Q. (2013). Molecular characterization and functional analysis of the Nep1-like protein-encoding gene from Phytophthora capsici. Genetics and Molecular Research, 12, 1468–1478. https://doi.org/10.4238/2013.April.26.8.
Foster, J. M., & Hausbeck, M. K. (2010). Resistance of pepper to Phytophthora crown, root, and fruit rot is affected by isolate virulence. Plant Disease, 94, 24–30. https://doi.org/10.1094/PDIS-94-1-0024.
Gao, X., Jackson, T. A., Lambert, K. N., Li, S., Hartman, G. L., & Niblack, T. L. (2004). Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Disease, 88, 1372–1380. https://doi.org/10.1094/PDIS.2004.88.12.1372.
Garcés-Fiallos, F. R., de Borba, M. C., Schmidt, É. C., Bouzon, Z. L., & Stadnik, M. J. (2017). Delayed upward colonization of xylem vessels is associated with resistance of common bean to Fusarium oxysporum f. sp. phaseoli. European Journal of Plant Pathology, 149, 477–489. https://doi.org/10.1007/s10658-017-1197-6.
Glosier, B. R., Ogundiwin, E. A., Sidhu, G. S., Sischo, D. R., & Prince, J. P. (2008). A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica, 162, 23–30. https://doi.org/10.1007/s10681-007-9532-1.
Granke, L. L., Windstam, S. T., Hoch, H. C., Smart, C. D., & Hausbeck, M. K. (2009). Dispersal and movement mechanisms of Phytophthora capsici sporangia. Phytopathology, 99, 1258–1264. https://doi.org/10.1094/PHYTO-99-11-1258.
Granke, L. L., Quesada-Ocampo, L., & Lamour, K. (2012). Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease, 96, 1588–1600. https://doi.org/10.1094/PDIS-02-12-0211-FE.
Hausbeck, M. K., & Lamour, K. H. (2004). Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Disease, 88, 1292–1303. https://doi.org/10.1094/PDIS.2004.88.12.1292.
Holmes, K. A., & Benson, D. M. (1994). Evaluation of Phytophthora parasítica var. nicotianae for biocontrol of Phytophthora parasítica on Catharanthus roseus. Plant Disease, 78, 193–199. https://doi.org/10.1094/PD-78-0193.
Keykhasaber, M., Pham, K. T. K., Thomma, B. P. H. J., & Hiemstra, J. A. (2017). Reliable detection of unevenly distributed Verticillium dahliae in diseased olive trees. Plant Pathology, 66, 641–650. https://doi.org/10.1111/ppa.12647.
Kim, Y. J., Hwang, B. K., & Park, K. W. (1989). Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Disease, 73, 745–747. https://doi.org/10.1094/PD-73-0745.
Koç, E., İşlek, C., Üstün, A. S., & Arıcı, Y. K. (2011). Defense responses in leaves of resistant and susceptible pepper (Capsicum annuum L.) cultivars infected with different inoculum concentrations of Phytophthora capsici Leon. Scientia Horticulturae, 128, 434–442. https://doi.org/10.1016/j.scienta.2011.02.008.
Lee, Y. K., Hong, J. K., Hippe-Sanwald, S., & Hwang, B. K. (2000). Histological and ultrastructural comparisons of compatible, incompatible and DL-β-amino-n-butyric acid-induced resistance responses of pepper stems to Phytophthora capsici. Physiological and Molecular Plant Pathology, 57, 269–280. https://doi.org/10.1006/pmpp.2000.0302.
Leonian, L. H. (1922). Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology, 12, 401–408.
Mercado-Blanco, J., Collado-Romero, M., Parrilla-Araujo, S., Rodríguez-Jurado, D., & Jiménez-Díaz, R. M. (2003). Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiological and Molecular Plant Pathology, 63, 91–105. https://doi.org/10.1016/j.pmpp.2003.10.001.
Mirmajlessi, S. M., Loit, E., Mänd, M., & Mansouripour, S. M. (2015). Real-time PCR applied to study on plant pathogens: Potential applications in diagnosis – A review. Plant Protection Science, 51, 177–190. https://doi.org/10.17221/104/2014-PPS.
Pacheco-Coello, R., Pestana-Justo, J., Factos-Mendoza, A., & Santos-Ordoñez, E. (2017). Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food. BMC Research Notes, 10, 758. https://doi.org/10.1186/s13104-017-3083-x.
Piccini, C., Parrotta, L., Faleri, C., Romi, M., Del Duca, S., & Cai, G. (2019). Histomolecular responses in susceptible and resistant phenotypes of Capsicum annuum L. infected with Phytophthora capsici. Scientia Horticulturae, 244, 122–133. https://doi.org/10.1016/j.scienta.2018.09.051.
Quirin, E. A., Ogundiwin, E. A., Prince, J. P., Mazourek, M., Briggs, M. O., Chlanda, T. S., Kim, K. T., Falise, M., Kang, B. C., & Jahn, M. M. (2005). Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. In pepper. Theoretical and Applied Genetics, 110(4), 605–612. https://doi.org/10.1007/s00122-004-1874-7.
Reaves, G., Monroy-Barbosa, A., & Bosland, P. W. (2013). A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. Phytopathology, 103, 472–478. https://doi.org/10.1094/PHYTO-09-12-0242-R.
Reis, A., Luiz Paz-Lima, M., Moita, A. W., Mendes Aguiar, F., de Noronha Fonseca, M. E, Corrêa Café-Filho, A., Silva Boiteux, L. (2018). A reappraisal of the natural and experimental host range of Neotropical Phytophthora capsici isolates from Solanaceae, Cucurbitaceae, Rosaceae, and Fabaceae. Journal of Plant Pathology 100 (2):215-223
Sala, F. C., da Costa, C. P., Echer, M. M., Martins, M. C., & Blat, S. F. (2004). Phosphite effect on hot and sweet pepper reaction to Phytophthora capsici. Science in Agriculture, 61, 492–495. https://doi.org/10.1590/S0103-90162004000500005.
Sang-Gyu, K., & Young-Ho, K. (2009). Histological and cytological changes associated with susceptible and resistant responses of chili pepper root and stem to Phytophthora capsici infection. Plant Pathology Journal, 25, 113–120. https://doi.org/10.5423/PPJ.2009.25.2.113.
Silvar, C., Diaz, J., & Merino, F. (2005). Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology, 95, 1423–1429. https://doi.org/10.1094/PHYTO-95-1423.
Sujkowski, L. S., Parra, G. R., Gumpertz, M. L., & Ristaino, J. B. (2000). Temporal dynamics of Phytophthora blight on bell pepper in relation to the mechanisms of dispersal of primary inoculum of Phytophthora capsici in soil. Phytopathology, 90, 148–156. https://doi.org/10.1094/PHYTO.2000.90.2.148.
Vandana, V. V., Suseela, B. R., & Shamina, A. (2014). Biochemical defense responses of black pepper (Piper nigrum L.) lines to Phytophthora capsici. Physiological and Molecular Plant Pathology, 88, 18–27. https://doi.org/10.1016/j.pmpp.2014.06.003.
Vélez-Olmedo, J. B., Saltos, L. A., Corozo, L., Bonfim, B. S. A., Vélez-Zambrano, S. M., Arteaga, F. J., García, M. A., & Pinho, D. B. (2020). First report of Phytophthora capsici Leonian causing wilting and root and crown rot on Capsicum annuum L. (bell pepper) in Ecuador. Plant Disease. https://doi.org/10.1094/PDIS-11-19-2432-PDN.
Acknowledgments
Authors are grateful to Ministerio del Ambiente of Ecuador by permission (MAE-DNBCM-2018-0095) for samples collection, and to Dr. Mario A. García Dávila for supplying seeds of Código 5 genotype. Likewise, we appreciate Dr. Maddela Naga Raju for the revision of the manuscript.
Funding
This work was supported by the Universidad Técnica de Manabí (No. PYTDOC-2018-FIAG0002) and the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador (No. SENACYT-FWO-10-005).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by F. R. Garcés-Fiallos. The first draft of the manuscript was written by F. R. Garcés-Fiallos and E. Santos-Ordóñez, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saltos, L.A., Corozo-Quiñones, L., Pacheco-Coello, R. et al. Tissue specific colonization of Phytophthora capsici in Capsicum spp.: molecular insights over plant-pathogen interaction. Phytoparasitica 49, 113–122 (2021). https://doi.org/10.1007/s12600-020-00864-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12600-020-00864-x