Skip to main content
Log in

Does the plant defense priming compound β-aminobutyric acid affect the performance of Macrolophus pygmaeus when used to control Bemisia tabaci in tomato?

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The β-aminobutyric acid (BABA) is a plant defense priming compound highly effective in controlling important tomato diseases and plant-parasitic nematodes. It has also been shown to induce resistance against phytophagous insects such as aphids. This study examines the effect of BABA on the performance of the tomato pest Bemisia tabaci (MEAM 1, previously known as Biotype B) and its zoophytophagous predator Macrolophus pygmaeus under laboratory and greenhouse conditions. Tomato plants were treated with BABA 25 mM applied by soil drenching. The effect of BABA on the fertility and juvenile development of two generations of B. tabaci and M. pygmaeus was evaluated. Our results showed no effect of BABA on the juvenile development or adult fecundity/fertility of both the whitefly and its predator. The non-interference of BABA with M. pygmaeus and B. tabaci assures that the control of the whitefly with this mirid bug will not be affected when this elicitor is applied to the crop. Further studies are needed to clarify the mechanisms underlying BABA-plant-whitefly-predatory myrids interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agustí, N., & Gabarra, R. (2009). Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. Journal of Pest Science, 82, 241–246.

    Google Scholar 

  • Alomar, O., Goula, M., & Albajes, R. (2002). Colonization of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agriculture, Ecosystems & Environment, 89, 105–115.

    Google Scholar 

  • Alomar, O., Riudavets, J., & Castañe, C. (2006). Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biological Control, 36, 154–162.

    Google Scholar 

  • Arnó, J., Gabarra, R., Liu, T.X., Simmons, A.M., & Gerling, D. (2010). Natural enemies of Bemisia tabaci: Predators and parasitoids. In: P.A. Stansly & Naranjo S.E. (Ed.), Bemisia: bionomics and management of a global pest (pp 385-421). Dordrecht, the Netherlands: Springer.

  • Aviron, S., Poggi, S., Varennes, Y. D., & Lefèvre, A. (2016). Local landscape heterogeneity affects crop colonization by natural enemies of pests in protected horticultural cropping systems. Agriculture, Ecosystems & Environment, 227, 1–10.

    Google Scholar 

  • Baccelli, I., Glauser, G., & Mauch-Mani, B. (2017). The accumulation of b-aminobutyric acid is controlled by the plant’s immune system. Planta, 246, 791–796.

    CAS  PubMed  Google Scholar 

  • Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Duran, P. J., Fanti, P., Guerrieri, E., Iodice, L., Lingua, G., Lorito, M., Maffei, M. E., Massa, N., Ruocco, M., Sasso, R., & Trotta, V. (2013). Tomato below ground–above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions, 26(10), 1249–1256.

    CAS  PubMed  Google Scholar 

  • Cao, H.-H., Zhang, M., Zhao, H., Zhang, Y., Wang, X.-X., Guo, S.-S., Zhang, Z.-F., & Liu, T.-X. (2014). Deciphering the mechanism of β-aminobutyric acid-induced resistance in wheat to the grain aphid, Sitobion avenae. PLoS One, 9, 1–9.

    Google Scholar 

  • Castañé, C., & Zapata, R. (2005). Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biological Control, 34, 66–72.

    Google Scholar 

  • Castañé, C., Alomar, O., Goula, M., & Gabarra, R. (2004). Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control, 30, 591–597.

    Google Scholar 

  • Castañé, C., Arnó, J., Rosa, G., & Alomar, O. (2011). Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control, 59, 22–29.

    Google Scholar 

  • Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R., & Guerrieri, E. (2016). Insights on the impact of Arbuscular Mycorrhizal Symbiosis on tomato tolerance to water stress. Plant Physiology, 171, 1009–1023.

    PubMed  PubMed Central  Google Scholar 

  • Cohen, Y. R. (2002). β-Aminobutyric acid-induced resistance against plant pathogens. Plant Disease, 86, 448–458.

    CAS  PubMed  Google Scholar 

  • Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. V., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., & Mauch-Mani, B. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19, 1062–1071.

    CAS  PubMed  Google Scholar 

  • Coppola, M., Cascone, P., Chiusano, M. L., Colantuono, C., Lorito, M., Pennacchio, F., Rao, R., Woo, S. L., Guerrieri, E., & Digilio, M. C. (2017). Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci., 24, 1025–1033.

    CAS  PubMed  Google Scholar 

  • Corrado, G., Caramantea, M., Piffanelli, P., & Rao, R. (2014). Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae, 168, 138–144.

    Google Scholar 

  • De Barro, P. J., & Ahmed, M. Z. (2011). Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS One, 6, e25579. https://doi.org/10.1371/journal.pone.0025579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán, J. P., Trotta, V., Fanti, P., Castañé, C., & Battaglia, D. (2016). Predation by Macrolophus pygmaeus (Hemiptera: Miridae) on Acyrthosiphon pisum (Hemiptera: Aphididae): Influence of prey age/size and predators intraspecific interactions. European Journal of Entomology, 113, 37–43.

    Google Scholar 

  • Duran, J. P., Castañé, C., Calvet, C., Camprubi, A., Battaglia, D., Trotta, V., & Fanti, P. (2017). Tomato belowground–aboveground interactions: Rhizophagus irregularis affects foraging behavior and life history traits of the predator Macrolophus pygmaeus (Hemiptera: Miridae). Arthropod-Plant Interactions, 11(1), 15–22.

    Google Scholar 

  • Durán, P. J., Trotta, V., Di Nardo, E., Forlano, P., Fanti, P., & Battaglia, D. (2018). Intraguild predation between Macrolophus pygmaeus and Aphidius ervi. Bulletin of Insectology, 71(1), 113–120.

    Google Scholar 

  • Estaún, V., Calvet, C., & Camprubi, A. (2010). Effect of differences among crop species and cultivars on the arbuscular mycorrhizal simbiosis. In: H. Koltai & Kalpulnik Y. (Ed) Arbuscular mycorrhizas: physiology and function (pp 279–295). New York: Springer..

  • Fatemy, S., Moslemi, F., & Bernard, F. (2012). Seed treatment and soil drench with DL-β-amino butyric acid for the suppression of Meloidogyne javanica on tomato. Acta Physiologiae Plantarum, 34, 2311–2317.

    CAS  Google Scholar 

  • Gerling, D., Alomar, O., & Arnó, J. (2001). Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection, 20, 779–799.

    Google Scholar 

  • Goggin, F. L., Williamson, V. M., & Ullman, D. E. (2001). Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene mi. Environmental Entomology, 30, 101–106.

    Google Scholar 

  • Hamdi, F., Chadoeuf, J., & Bonato, O. (2013). Functional relationships between plant feeding and prey feeding for a zoophytophagous bug. Physiological Entomology, 38, 241–245.

    Google Scholar 

  • Han, P., Dong, Y., Lavoir, A. V., Adamowicz, S., Bearez, P., Wajnberg, E., & Desneux, N. (2015). Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Ecology and Evolution, 5, 5468–5477.

    PubMed  PubMed Central  Google Scholar 

  • Hao, P., Liu, C., Wang, Y., Chen, R., Tang, M., Du, B., Zhu, L., & He, G. (2008). Herbivore-induced Callose deposition on the sieve plates of rice: An important mechanism for host resistance. Plant Physiology, 146, 1810–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan, M. A. E., & Buchenauer, H. (2008). Enhanced control of bacterial wilt of tomato by DL-3-aminobutyric acid and the fluorescent Pseudomonas isolate CW2. Journal of Plant Diseases and Protection, 115, 199–207.

    CAS  Google Scholar 

  • Heil, M. (2002). Ecological cost of induced resistance. Current Opinion in Plant Biology, 5, 1–5.

    Google Scholar 

  • Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17–25.

    CAS  PubMed  Google Scholar 

  • Hodge, S., & Powell, G. (2012). Factors influencing the inhibition of aphids by β-aminobutyric acid. IOBC-WPRS Bulletin, 83, 47–51.

    Google Scholar 

  • Hodge, S., Thompson, G. A., & Powell, G. (2005). Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum Harris. Bulletin of Entomological Research, 95, 449–455.

    CAS  PubMed  Google Scholar 

  • Hodge, S., Pope, T. W., Holaschke, M., & Powell, G. (2006). The effect of β-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Annals of Applied Biology, 148, 223–229.

    CAS  Google Scholar 

  • Hodge, S., Ward, J. L., Galster, A. M., Beale, M. H., & Powell, G. (2011). The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid. BioControl, 56, 699–711.

    CAS  Google Scholar 

  • Inbar, M., Doostdar, H., Sonoda, R. M., Leibee, G. L., & Mayer, R. T. (1997). Elicitors of plant defensive systems reduce insect densities and disease incidence. Journal of Chemical Ecology, 24, 135–149.

    Google Scholar 

  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology, 107, 29–37.

    CAS  Google Scholar 

  • Justyna, P.-G., & Ewa, K. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35, 1735–1748.

    CAS  Google Scholar 

  • Kempema, L. A., Cui, X., Holzer, F. M., & Walling, L. L. (2007). Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 143, 849–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef, A., & Pieterse, C. M. J. (2008). Cross talk in defense signaling. Plant Physiology, 146, 839–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kos, M., Kabouw, P., Noordam, R., Hendriks, K., Vet, L. M., Van Loon, J. J. A., & Dicke, M. (2011). Prey-mediated effects of glucosinolates on aphid predators. Ecological Entomology, 36, 377–388.

    Google Scholar 

  • Lou, Y. G., Du, M. H., Turlings, T. C. J., Cheng, J. A., & Shan, W. F. (2005). Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. Journal of Chemical Ecology, 31, 1985–2002.

    CAS  PubMed  Google Scholar 

  • Mayer, R. T., Ibar, M., McKenzie, C. L., Shatters, R., Borowicz, V., Albrecht, U., Powell, C. A., & Doostdar, H. (2002). Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology, 51, 151–169.

    CAS  PubMed  Google Scholar 

  • McKenzie, C. L., Andereson, P. K., & Villareal, N. (2004). An extensive survey of Bemisia tabaci (Homoptera: Aleyrodidae) in agricultural ecosystems in Florida. Florida Entomologist, 87, 403–407.

    Google Scholar 

  • Moraes, M. C. B., Laumann, R. A., Pareja, M., Seron, F. T. P. S., Michereff, M. F. F., Birkett, M. A., Pickett, J. A., & Borges, M. (2009). Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated treatment with cis-jasmone. Entomologia Experimentalis et Applicata, 131, 178–188.

    CAS  Google Scholar 

  • Moreno-Ripoll, R., Gabarra, R., Symondson, W. O. C., King, R. A., & Agustí, N. (2012). Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: A molecular approach. Bulletin of Entomological Research, 102, 415–423.

    CAS  PubMed  Google Scholar 

  • Mutar, S. S., & Fattah, F. A. (2013). Induced systemic resistance in tomato plants against Meloidogyne spp by seed treatment with β, amino butyric acid and Benzothiadiazol. Journal of Biology, Agriculture and Healthcare, 3, 49–55.

    Google Scholar 

  • Pappas, M. L., Steppuhn, A., Geuss, D., Topalido, N., Zografou, A., Sabelis, M. W., & Broufas, G. D. (2015). Beyond predation: The zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS One, 10(5), e0127251. https://doi.org/10.1371/journal.pone.0127251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdikis, D., & Lykouressis, D. P. (2004). Myzus persicae (Homoptera: Aphididae) as a suitable prey for Macrolophus pygmaeus (Hemiptera: Miridae) population increase on pepper plant. Environmental Entomology, 33, 499–505.

    Google Scholar 

  • Perdikis, D., Fantinou, A., & Lykouressis, D. (2011). Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biological Control, 59, 13–21.

    Google Scholar 

  • Pérez-Hedo, M., Urbaneja-Bernat, P., Jaques, J. A., Flors, V., & Urbaneja, A. (2015). Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. Journal of Pest Science, 88, 543–554.

    Google Scholar 

  • Pollard, D. G. (1955). Feeding habits of the cotton whitefly, Bemisia tabaci Genn. (Homoptera Aleyrodidae). Annals of Applied Biology, 43, 315–350.

    Google Scholar 

  • Puthoff, D. P., Holzer, F. M., Perring, T. M., & Walling, L. L. (2010). Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. Journal of Chemical Ecology, 36, 1271–1285.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing, R Foundation for statistical computing, Vienna. URL: Austria https://www.R-project.org/.

    Google Scholar 

  • Rivelli, A. R., Trotta, V., Toma, I., Fanti, P., & Battaglia, D. (2013). Relation between plant water status and Macrosiphum euphorbiae (Hemiptera: Aphididae) population dynamics on three cultivars of tomato. European Journal of Entomology, 110(4), 617–625.

    Google Scholar 

  • Robert, P., Braud, F., Aligon, S., & Brisset, M. N. (2016). DL-β-aminobutyric acid application negatively affects reproduction and larval development of the rosy apple aphid Dysaphis plantaginea, on apple. Entomologia Experimentalis et Applicata, 159, 46–53.

    CAS  Google Scholar 

  • Sampson, A., & Jacobson, R. (1999). Macrolophus caliginosus Wagner (Heteroptera: Miridae): A predator causing damage to UK tomatoes. IOBC Bulletin, 22, 213–216.

    Google Scholar 

  • Shah, M. M., Zhang, S., & Liu, T. (2015). Whitefly, host plant and parasitoid: A review on their interactions. Asian Journal of Applied Science and Engineering, 4, 48–61.

    Google Scholar 

  • Sharma, K., Butz, A. F., & Finckh, M. R. (2010). Effects of host and pathogen genotypes on inducibility of resistance in tomato (Solanum lycopersicum) to Phytophthora infestans. Plant Pathology, 59, 1062–1071.

    Google Scholar 

  • Shimoda, T., Ozawa, R., Arimura, G., Takabayashi, J., & Nishioka, T. (2002). Olfactory responses of two specialist insect predators of spider mites towardplant volatiles from lima bean leaves induced by jasmonic acid and/or methylsalicylate. Applied Entomology and Zoology, 37(4), 535–541.

    CAS  Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    CAS  PubMed  Google Scholar 

  • Sun, M., Voorrips, R. E., Steenhuis-Broers, G., Van’t Westende, W., & Vosman, B. (2018). Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biology, 18, 138.

    PubMed  PubMed Central  Google Scholar 

  • Tiwari, S., Meyer, W. L., & Stelinski, L. L. (2013). Induced resistance against the Asian citrus psyllid, Diaphorina citri, by β-aminobutyric acid in citrus. Bulletin of Entomological Research, 103, 592–600.

    CAS  PubMed  Google Scholar 

  • Van der Ent, S., Van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J., & Ton, J. (2009). Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: Differences and similarities in regulation. New Phytologist, 183, 419–431.

    Google Scholar 

  • Van Hulten, M., Pelser, M., van Loop, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. PNAS, 103, 5602–5607.

    PubMed  Google Scholar 

  • Walling, L. L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 19, 195–216.

    CAS  PubMed  Google Scholar 

  • Walling, L. L. (2008). Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiology, 146, 859–866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters, D. R., Paterson, L., Walsh, D. J., & Havis, N. D. (2009). Priming for plant defense in barley provides benefits only under high disease pressure. Physiological and Molecular Plant Pathology, 73, 95–100.

    Google Scholar 

  • Wang, X. W., Li, P., & Liu, S. S. (2017). Whitefly interactions with plants. Current Opinion in Insect Science, 19, 70–75.

    PubMed  Google Scholar 

  • Williams, A. C., & Flaxman, S. M. (2012). Can predators assess the quality of their prey’s resource? Animal Behaviour, 83, 883–890.

    Google Scholar 

  • Zarate, S. I., Kempema, L. A., & Walling, L. L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 143, 866–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N. X., Messelink, G. J., Alba, J. M., Schuurink, R. C., Kant, M. R., & Janssen, A. (2018). Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia, 186, 101–113.

    PubMed  Google Scholar 

  • Zhong, Y., Wang, B., Yan, J., Chen, L., Yao, L., Xiao, L., & Wu, T. (2014). DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PLoS One, 9, 1–11.

    Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by b-aminobutyric acid. Proceedings of the National Academy of Sciences USA, 97, 12920–12925.

    CAS  Google Scholar 

  • Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). b-Amino-butyric acid-induced protection of Arabidopsis against the necrotro-phic fungus Botrytis cinerea. Plant Physiology, 126, 517–523.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Pilar Hernández and Victor Muñoz for their technical support. We are also thankful for the valuable suggestions of two anonymous reviewers. This work was funded in part by the Spanish Ministry of Economy and Competitiveness (MINECO) (Project AGL2011-24349) and by the CERCA Programme (Generalitat de Catalunya), and J. Durán went through a predoctoral stage at IRTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Durán Prieto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, J.D., Alomar, O., Agustí, N. et al. Does the plant defense priming compound β-aminobutyric acid affect the performance of Macrolophus pygmaeus when used to control Bemisia tabaci in tomato?. Phytoparasitica 49, 195–205 (2021). https://doi.org/10.1007/s12600-020-00850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00850-3

Keywords

Navigation