Skip to main content
Log in

Toxicity of Phenylpropanoids from Alpinia galanga (Zingiberaceae) extracts against Spodoptera exigua Hübner (Lepidoptera: Noctuidae)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Spodoptera exigua Hübner is one of the most important agricultural pests in Thailand. The present study investigated the toxicity of crude extracts and phenylpropanoid compounds of A. galanga (Zingiberaceae) against S. exigua. After 24 h of a topical application bioassay on secondary instar larvae, the ethyl acetate extract estimation of the LD50 of A. galanga (Zingiberaceae) showed toxicity toward secondary instar S. exigua larvae (LD50 ~ 2.44 µg/larva). Phenylpropanoid compounds were isolated from the ethyl acetate A. galanga crude extract which has [1’S]-1’-acetoxychavicol acetate as highest toxicity (LD50 of 1.93 µg/larvae). [1’S]-1’-acetoxychavicol acetate also showed carboxylesterase activity inhibition. Thus, the ethyl acetate extract of A. galanga may have [1’S]-1’-acetoxychavicol acetate as an active ingredient for controlling this pest, which could be used as an alternative to application of environmentally insecticides for controlling S. exigua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdullah, F., P. Subramanian, H. Ibrahim, S. N. A. Malek, L. Guan-Serm, & S. L. Hong. (2015). Chemical Composition, Antifeedant, Repellent, and Toxicity Activities of the Rhizomes of Galangal, Alpinia galanga Against Asian Subterranean Termites, Coptotermes gestroi and Coptotermes curvignathus(Isoptera:Rhinotermitidae). Journal of Insect Science, 15, 1–7.

  • Ahmad, M., & Arif, M. I. (2010). Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Journal of Crop Protection, 29, 1428–1433.

    CAS  Google Scholar 

  • Ahmad, S., Brattsten, L. B., Mullin, C. A., & Yu, S. J. (1986). Enzymes involved in the metabolism of plant allelochemicals. In Brattsten and Ahmad (Eds.), Molecular Aspects of Insect-Plant Associations (pp. 73–127). New York: Plenum Press.

  • Arivoli, S., & Tennyson, S. (2012). Antifeedant Activity of Plant Extracts Against Spodoptera litura(Fab.)(Lepidoptera:Noctuidae). American-Eurasian Journal of Agricultural & Environmental Sciences, 12, 764–768.

  • Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studie, 1, 87–96.

    Google Scholar 

  • Berenbaum, M. R., & Zangerl, A. R. (1994). Costs of inducible defense: protein limitation, growth, and detoxification in parsnip webworms. Ecology, 75, 2311–2317.

    Google Scholar 

  • Brattsten, L. B. (1979). Ecological significance of mixed function oxidases. Drug Metabolism Reviews, 10, 35–58.

    CAS  PubMed  Google Scholar 

  • Bullangpoti, V., Khumrungsee, N., Pluempanupat, W., Kainoh, Y., & Saguanpong, U. (2010). Toxicity of ethyl acetate extract and ricinine from Jatropha gossypifolia senescent leaves against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Pesticide Science, 36, 260–263.

  • Bullangpoti, V., Visetson, S., Milne, J., Milne, M., Sudthongkong, C., & Pornbanlualap, S. (2007). Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanisms. Communications in Agricultural and Applied Biological Sciences, 72, 431–423.

    CAS  PubMed  Google Scholar 

  • Bullangpoti, V., Wajnberg, E., Audant P., & Feyereisen, R. (2012). Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Management Science, 68(9), 1534–1540

    Google Scholar 

  • Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S., & Bass, C. (2013). Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One, 8, e62268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel, B. S., & Trevedi, S. S. (2010). Insecticidal bioefficiency of alpinia galanga (L) wild. Zingiber officinale Linn. and Curcuma longa Linn. against larvae of Athalia proxima Klug. (Hymenoptera: Tenthridinidae) on cabbage under in vitro conditions. Journal of Environmental Biosciences, 24, 115–120.

    Google Scholar 

  • Feng, R., Chen, W., & Isman, M. B. (1995). Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia toosendan (Meliaceae). Pesticide Biochemistry and Physiology, 53, 34–41.

    CAS  Google Scholar 

  • Feyereisen, R. (2005). Comprehensive Molecular Insect Science. Comprehensive Molecular Insect Science, 4, 1–77.

    CAS  Google Scholar 

  • Juáreza, Z. N., Antonio, M. F., Sánchez-Arreolac, E., López-Olguínd, J. F., Horacio, B., & Hernández, L. R. (2014). Antifeedant and phagostimulant activity of extracts and pure compounds from Hymenoxys robusta on Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Natural Product Communications, 9, 895–898.

    Google Scholar 

  • Kamaraj, C., Rahuman, A. A., & Bagavan, A. (2008). Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitology Research, 103, 325–331.

    CAS  PubMed  Google Scholar 

  • Koul, O., & Walia, S. (2009). Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1–30.

  • Lai, T., & Su, J. (2011). Assessment of resistance risk in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science, 67, 1468–1472.

  • Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231–53.

    PubMed  Google Scholar 

  • Mar, K. M. (2019). Efficacy of the Extract from Sugar Apple Leaves (Annona Squamosa L.) Against the First Instar Larvae of Spodoptera exigua (Hübner, 1808). International Journal of Agricultural Research, 2, 257–263.

    Google Scholar 

  • Mokkhasmit, M., Swatdimongkol, K., & Satrawaha, P. (1971). Study on toxicity of Thai medicinal plants. Bulletin Department of Medical Science, 12, 36–65.

    Google Scholar 

  • Muralidhara, H. R. (2009). Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology, 30, 977–385.

    PubMed  Google Scholar 

  • Muthusamy S., & Karthi, R. (2011). Pesticide detoxifying mechanism in field population of Spodoptera litura (Lepidoptera: noctuidae) from South India. Egyptian Academic Journal of Biological Sciences, 3, 51–57.

    Google Scholar 

  • Oppenoorth F. J., Van der Pas, L. J. T., & Houx, N. W. H. (1979). Glutathione S- transferases and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pesticide Biochem Physiol, 11, 176–188

    CAS  Google Scholar 

  • Pancharoen, O., Prawat, U., & Tuntiwachwuttikul, P. (2000). Phytochemistry of the Zingiberaceae, Studies in natural products chemistry, Atta-ur-Rehman (Ed.), vol. 23. pp. 797–865. Amsterdam: Elsevier, B.V.

  • Pandji, C., Grimm, C., Wray, V., Witte, L., & Proksch, P. (1993). Insecticidal constituents from four species of the zingiberaceae. Phytochemistry, 34, 415–419.

    CAS  Google Scholar 

  • Rachokarn, S., Piyasaenghthong, N., & Bullangpoti, V. (2008). Impact of botanical extracts derived from leaf extracts of Melia azedarach L. (Meliaceae) and Amaranthus viridis L. (Amaranthaceae) on population of Spodoptera exigua (Hu¨bner) (Lepidoptera: Noc-tuidae) and detoxification enzyme activities. Communications in Agricultural and Applied Biological Sciences, 73, 451–458.

    PubMed  Google Scholar 

  • Ramsey, J. S., Rider, D. S., Walsh, T. K., De Vos, M., Gordon, K. H. J., Ponnala, L. et al. (2010). Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Molecular Biology, 19, 155–164.

    CAS  PubMed  Google Scholar 

  • Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M. V., Unger, M. F., Collins, F. H., & Feyereisen, R. (2002). Evolution of supergene families associated with insecticide resistance. Science, 298, 179–181.

  • Rathi, J. M., & Gopalakrishnan, S. (2006). Insecticidal activity of aerial parts of Synedrella nodiflora Gaertn (Compositae) on Spodoptera litura (Fab.). Journal of Central European Agriculture, 7, 289–296.

    Google Scholar 

  • Rattanapan, A. (2009). Effect of rotenone from derris crude extract on esterase enzyme mechanism in the beet armyworm, Spodoptera exigua (Hubner). Communications in Agricultural and Applied Biological Sciences, 74, 437–444.

    PubMed  Google Scholar 

  • Riddiford, L. M., Hiruma, K., Zhou, X., & Nelson, C. A. (2003). Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33, 1327–1338.

    CAS  PubMed  Google Scholar 

  • Selin-Rani, S., Senthil-Nathan, S., Revathi, K., Chandrasekaran, R., Thanigaivel, A., Vasantha- Srinivasan, P., Posankar, A., San Edwin, E., Pradeepa, V. (2016). Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pesticide Biochemistry and Physiology, 126, 92–101.

  • Simon, J. Y., & Hsu, E. L. (1993). Induction of detoxification enzymes in phytophagous insects: role of insecticide synergists, larval age and species. Archives of Insect Biochemistry and Physiology, 24, 21–32.

    Google Scholar 

  • Sintim, H. O., Tashiro, T., & Motoyama, N. (2009). Response of the cutworm Spodoptera litura to sesame leaves or crude extracts in diet. Journal of Insect Science, 9, 1–13.

    Google Scholar 

  • Smirle, M. J., Lowery, D. T., & Zurowski, C. L. (1996). Influenze of neem oil on detoxication enzyme activity in the obliquebanded leafroller, Choristoneura rosaceana. Pesticide Biochemistry and Physiology, 56, 220–230.

    CAS  Google Scholar 

  • Snyder, M. J., & Glendinning, J. I. (1996). Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. Journal of Comparative Physiology, 179, 255–261.

    CAS  PubMed  Google Scholar 

  • Su, J., & Sun, X. X. (2014). High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Journal of Crop Protection, 61, 58–63.

    CAS  Google Scholar 

  • Sukhirun, N., Pluempanupat, W., Bullangpoti, V., & Koul, O. (2011). Bioefficacy of Alpinia galanga (Zingiberaceae) Rhizome Extracts, (E)-p-Acetoxycinnamyl Alcohol, and (E)-p-Coumaryl Alcohol Ethyl Ether Against Bactrocera dorsalis (Diptera: Tephritidae) and the Impact on Detoxification Enzyme Activities. Journal of Economic Entomology, 104, 1534–1540.

    CAS  PubMed  Google Scholar 

  • Summarwar, S., & Pandey, J. (2015). Effect of Neem extract on ovicidal activity of Spodoptera litura. International Journal of Pure & Applied Bioscience, 3, 143–146.

    Google Scholar 

  • Takai, M. (1991). Insecticide resistance of the beet armyworm, Spodoptera exigua (Hübner). Shokubutu Boeki (Plant Protection), 45, 238–241 (In Japanese).

    Google Scholar 

  • Taylor, P., & Radic, Z. (1994). The cholinesterases: From genes to proteins. The Annual Review of Pharmacology and Toxicology, 34, 281–320.

  • Wheeler, D. A., & Isman, M. B. (2001). Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomologia Experimentalis et Applicata, 98, 9–16.

    Google Scholar 

  • Wu, Y., Wang, Y., Li, Z. H., Wang, C. F., Wie, J. Y., Li, X. L., Wang, P. J., Zhou, Z. F., Du, S. S., Huang, D. Y., & Deng, Z. W. (2014). Composition of the essential oil from Alpinia galanga rhizomes and its bioactivity on Lasioderma serricorne. Bulletin of Insectology, 67, 247–254.

  • Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda(JE Smith). Pesticide Biochemistry and Physiology, 77, 1–11.

  • Zhang, J. F., Chen, L., Huang, S., Shan, L. H., Gao, F. & Zhou, X.L. (2017a). Diterpenoid alkaloids from two aconitum species with antifeedant activity against Spodoptera exigua. Journal of Natural Products, 80, 3136–3142.

    CAS  PubMed  Google Scholar 

  • Zhang, Y. N., He, P., Xue, J. P., Guo, Q., Zhu, X. Y., Ping, L., Fang, Li, J.-B. (2017b). Insecticidal activities and biochemical properties of Pinellia ternate extracts against the beet armyworm Spodoptera exigua. Journal of Asia-Pacific Entomology, 20, 469–476.

Download references

Acknowledgements

This work was supported by postdoctoral funding of KURDI, Kasetsart university, the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation. A.P. is grateful for the Strengthening and Developing New Researcher Plan, in conformance with the Research and Innovation of Graduate Study Strategy of the National Research Council of Thailand (NRCT) as of the fiscal year 2019 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasakorn Bullangpoti.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thitaree Yooboon and Anchulee Pengsook contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yooboon, T., Pengsook, A., Poonsri, W. et al. Toxicity of Phenylpropanoids from Alpinia galanga (Zingiberaceae) extracts against Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Phytoparasitica 48, 833–840 (2020). https://doi.org/10.1007/s12600-020-00830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00830-7

Keywords

Navigation