Skip to main content
Log in

Virulence and genetic diversity of Puccinia striiformis f. sp. tritici isolates in sub-mountainous area of Punjab, India

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Information on the pathogen virulence profile and diversity across locations is crucial for host germplasm improvement and deployment. The rapid acquisition of virulence to host resistance by the wheat yellow/stripe rust pathogen (Puccinia striiformis f.sp. tritici: Pst), makes it crucial to know about its virulence and pathotype diversity. To assess the status of virulence and pathotype diversity in the sub-mountainous areas of Punjab, 27 stripe rust infected wheat samples from initial foci developed early in crop season were collected, multiplied and pathotyped using differential sets carrying known resistance genes. All the Pst isolates were virulent on lines carrying genes Yr2, Yr3, Yr4, Yr6, Yr7, Yr8, Yr9 and were avirulent on genes Yr1, Yr5, Yr10, Yr15 and Yr24/Yr26. Out of 27 isolates, only 4 pathotypes were detected indicating low pathotype diversity in Punjab. Two pathotypes i.e. 46S119 and 110S119 were most prevalent in Punjab. Other pathotypes recorded were; 238S119 and 110S84 but their prevalence was less. Three Pst pathotypes (46S119, 110S119 and 238S119) were tested for aggressiveness and it is found that 238S119 was more aggressive followed by 110S119 as spore production and uredial density was higher for this pathotype. Genetic diversity of the isolates was studied by using 74 SSR markers developed by different researchers. Scatter plot generated from the molecular data revealed the high genetic diversity among the isolates of Punjab. None of the pathotype showed any location specificity. Low pathotype diversity observed can be due to the cultivation of cultivars carrying only 1 or 2 major genes and high genetic diversity arised due to local adaptation, evolution for increased aggressiveness, mutation or parasexuality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & De Vallavieille-Pope, C. (2011). A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f.sp. tritici, based on DNA extraction from infected leaf and Multiplex PCR genotyping. BMC Reserch Notes, 4, 1–5.

    CAS  Google Scholar 

  • Ali, S., Gladieux, P., & Leconte, M. (2014a). Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathogens, 10, e1003903.

  • Ali, S., Leconte, M., & Rahman, H. (2014b). A high virulence and pathotype diversity of Puccinia striiformis f. sp. tritici at its centre of diversity, the Himalayan region of Pakistan. European Journal of Plant Pathology, 140, 275–290.

    Google Scholar 

  • Ali, S., Sharma, S., Leconte, M., Shah, S. J. A., Duveiller, E., Enjalbert, J., & Vallavieille-pope, C. D. (2018). Low pathotypes diversity in a recombinant Puccinia striiformis population through convergent selection at the eastern Himalayan center of diversity (Nepal). Plant Pathology, 67, 810–820.

    Google Scholar 

  • Bailey, J., Karaoglu, H., Wellings, C. R., & Park, R. F. (2013). Isolation and characterization of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp. tritici. Molecular Ecology Resources, 13, 760–762.

    PubMed  Google Scholar 

  • Bhardwaj, S. C., & Singh, G. P. (2019). Tackling wheat rusts through resistance – success, challenges and preparedness. Current Science, 116, 1953–1954.

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in map using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdon, J. J., & Silk, J. (1997). Sources and patterns of diversity in plant pathogenic fungi. Phytopathology, 87, 664–669.

    CAS  PubMed  Google Scholar 

  • Chen, X. M. (2005). Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27, 314–337.

    Google Scholar 

  • Cheng, P., & Chen, X. M. (2014). Virulence and molecular analysis support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology,104, 1208–1220.

    CAS  PubMed  Google Scholar 

  • Cheng, P., Chen, X. M., Xu, L., & See, D. R. (2012). Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Molecular Ecology, 99, 282–289.

    Google Scholar 

  • Dawit, W., Flath, K., Weber, W. E., Schumann, E., & Kosman, E. (2009). Virulence and diversity of Puccinia striiformis f. sp. tritici in Ethiopia. Canadian Journal of Plant Pathology, 31, 211–219.

    Google Scholar 

  • Duan, X., Tellier, A., Wan, A., Leconte, M., De Vallavieille-Pope, C., & Enjalbert, J. (2010). Puccinia striiformis f. sp. tritici present high diversity and recombination in the over-summering zone of Gansu, China. Mycologia, 102, 44–53.

    CAS  PubMed  Google Scholar 

  • Elyasi-Gomari, S., & Petrenkova, V. P. (2011). Virulence of Puccinia striiformis f. sp. tritici in Khuzestan Province of Iran. American Journal of Experimental Agriculture, 1, 281–293.

    Google Scholar 

  • Enjalbert, J., Duan, X., Leconte, M., Vautrin, D., Hovmøller, M. S., & Vallavieille-Pope, C. (2005). Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Molecular Ecology, 14, 2065–2073.

    CAS  PubMed  Google Scholar 

  • Gangwar, O. P., Kumar, S., Bhardwaj, S. C., & Prasad, P. (2017). Detection of new Yr1-virulences in Puccinia striiformis f. sp. tritici population and its sources of resistance in advance wheat lines and released cultivars. Indian Phytopathology, 70, 307–317.

    Google Scholar 

  • Gangwar, O. P., Kumar, S., Bhardwaj, S. C., Kashyap, P. L., Prasad, P., & Khan, H. (2019). Characterization of three new Yr9-virulences and identification of sources of resistance among recently developed Indian bread wheat germplasm. Journal of Plant Pathology. https://doi.org/10.1007/s42161-019-00302-w.

    Article  Google Scholar 

  • Gangwar, O. P., Kumar, S., Prasad, P., & Bhardwaj, S. C. (2016). Virulence pattern and emergence of new pathotypes in Puccinia striiformis f. sp. tritici during 2011-15 in India. Indian Phytopathology, 69, 178–185.

    Google Scholar 

  • Han, D., Wang, Q., Chen, X., & Zeng, Q. D. (2015). Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 99, 754–760.

    CAS  PubMed  Google Scholar 

  • Hovmoller, M. S., Justesen, A. F., & Brown, J. K. M. (2002). Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathology, 51, 24–32.

    Google Scholar 

  • Hovmoller, M. S., Sørensen, C. K., Walter, S., & Justesen, A. F. (2011). Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology, 49, 197–217.

    PubMed  Google Scholar 

  • Ibrahim, M., Shah, S. J. A., Hussain, S., Ahmad, M., & Ullah, F. (2015). Virulence patterns of wheat yellow rust and effective resistance genes to Puccinia striiformis f. sp. tritici in Pakistan. International Journal of Development Research, 5, 3651–3657.

    Google Scholar 

  • Jindal, M. M., Sharma, I., & Bains, N. S. (2012). Losses due to stripe rust caused by Puccinia striiformis in different varieties of wheat. Journal of Wheat Research, 4, 86–88.

    Google Scholar 

  • Justesen, A. F., Ridout, C. J., & Hovmøller, M. S. (2002). The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathology, 51, 13–23.

    Google Scholar 

  • Kaur, H., Kaur, J., Bala, R., Sharma, A., Pannu, P. P. S., Chhuneja, P., & Bains, N. S. (2017). Virulence and genetic diversity of Puccinia striiformis f.sp. tritici isolates in Punjab. Indian Phytopathology, 70, 40–44.

    Google Scholar 

  • Kaur, J., Bala, R., Kaur, H., Pannu, P. P. S., Kumar, A., & Bhardwaj, S. C. (2018). Current status of wheat diseases in Punjab. Agricultural Research Journal, 55, 113–116.

    Google Scholar 

  • Kolmer, J. A. (1992). Virulence heterozygosity and gametic phase disequilibria in two populations of Puccinia recondite (wheat leaf rust fungus). Heredity, 68, 505–513.

    Google Scholar 

  • Line, R. F. (2002). Stripe rust of wheat and barley in north America: A retrospective historical review. Annual Review of Phytopathology, 40, 75–118.

    CAS  PubMed  Google Scholar 

  • Mboup, M., Leconte, M., & Gautier, A. (2009). Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genetics and Biology, 46, 299–307.

    CAS  PubMed  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    CAS  PubMed  Google Scholar 

  • Paillard, S., Trotoux-Verplancke, G., Perretant, M. R., Mohamadi, F., Leconte, M., Coëdel, S., De Vallavieille-Pope, C., & Dedryver, F. (2012). Durable resistance to stripe rust is due to three specific resistance genes in French bread wheat cultivar Apache. Theoretical and Applied Genetics, 125, 955–965.

    CAS  PubMed  Google Scholar 

  • Pannu, P. P. S., Mohan, C., Singh, G., Kaur, J., Mann, S. K., Bala, G. K., Prashar, M., Bhardwaj, S. C., Meeta, M., Sharma, I., & Rewal, H. S. (2010). Occurrence of yellow rust of wheat, its impact on yield viz-a-viz its management. Plant Disease Research, 25, 144–150.

    Google Scholar 

  • Park, R. F., Bariana, H. S., Wellings, C. R., & Wallwork, H. (2002). Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Australian Journal of Agricultural Research, 53, 1069–1076.

    CAS  Google Scholar 

  • Prashar, M., Bhardwaj, S. C., Jain, S. K., & Datta, D. (2007). Pathotypic evolution in Puccinia striiformis in India during 1995–2004. Australian Journal of Agricultural Research, 58, 602–604.

    Google Scholar 

  • Prashar, M., Bhardwaj, S. C., Jain, S. K., & Gangwar, O. P. (2015). Virulence diversity in Puccinia striiformis f.sp. tritici causing yellow rust on wheat (Triticum aestivum) in India. Indian Phytopathology, 68, 129–133.

    Google Scholar 

  • Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust diseases of wheat: Concepts and methods of disease management (p. 81). Mexico: CIMMYT.

    Google Scholar 

  • Saluja, M., Kaur, S., Sharma, P., Bains, N. S., & Chhuneja, P. (2016). Evaluation of molecular diversity in stripe rust samples using EST-derived SSR markers. Indian Phytopathology, 69, 368–372.

    Google Scholar 

  • Shah, S. J. A., Imtiaz, M., & Hussain, S. (2010). Phenotypic and molecular characterization of wheat for slow rusting resistance against Puccinia striiformis westend. f. sp. tritici. Journal of Phytopathology, 158, 393–402.

    CAS  Google Scholar 

  • Sharma-Poudyal, D., Chen, X. M., Wan, A. M., Zhan, G. M., Kang, Z. S., Cao, S. Q., et al. (2013). Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Disease,97, 379–386.

    CAS  PubMed  Google Scholar 

  • Stakman, E. C., Steward, D. M., & Loegering, W. Q. (1962). Identification of Physiologic Pathotypes of Puccinia graminis var. tritici (pp. 1–53). Washington, D.C.: United State Department of Agriculture, Agriculture Research Services.

  • Wellings, C. R. (2011). Global status of stripe rust: A review of historical and current threats. Euphytica, 179, 129–141.

    Google Scholar 

  • Wellings, C. R. (2007). Puccinia striiformis in Australian: A review of the incursion, evolution and adaptation of stripe rust in the period 1979–2006. Australian Journal of Agricultural Research, 58, 567–575.

    Google Scholar 

  • Zhao, J., Wang, L., Wang, Z. Y., Chen, X. M., Zhang, H. C., Yao, J. N., Zhan, G. M., Chen, W., Huang, L. L., & Kang, Z. S. (2013). Identification of eighteen Barberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 103, 927–934.

    PubMed  Google Scholar 

  • Zhan, G., Wang, F., Luo, H., & Jiang, S. (2015). Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence. The Journal of Zhejiang University Science B: Biomedicine & Biotechnology, 16, 727–732.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the grant received from the Department of Science and Technology, Govt. of India, New Delhi, through INSPIRE Ph.D. FELLOWSHIP PROGRAMME to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh.

Ethics declarations

Conflict of interest

The authors and funding agency declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kaur, J., Bala, R. et al. Virulence and genetic diversity of Puccinia striiformis f. sp. tritici isolates in sub-mountainous area of Punjab, India. Phytoparasitica 48, 383–395 (2020). https://doi.org/10.1007/s12600-020-00809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00809-4

Keywords

Navigation