Skip to main content
Log in

Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Bactrocera zonata (Saunders), a serious polyphagous pest of horticultural crops, was studied for temperature based growth potential at ecologically relevant constant temperatures (15, 20, 25, 30 and 35 °C; relative humidity of 60 ± 10% and a photoperiod of 12:12 h L:D) and simulated growth potential parameters were validated with fluctuating temperatures life cycle data under laboratory conditions on artificial diet. Rate summation and cohort updating approaches were used for simulating development and estimating life-table parameters of B. zonata. The results revealed that lower development thresholds as 11.9, 12.7, and 13.6 °C and optimum temperature for survival as 26.01 °C, 26.2 °C and 25.5 °C determined for eggs, larvae and pupae, respectively. Reduction in mean development time of all immature stages occurred with increase in temperature. The highest net reproductive rate (77.64 ± 2.59 females/female/generation), total fecundity (260.20 ± 6.37 individuals/female/generation), intrinsic rate of increase (0.10 ± 0.000 females/female/day) and finite rate of increase (1.10 ± 0.000 females/female/day) were obtained maximum at 30 °C. At lowest extreme temperature (15 °C) tested in present study, females were not able to lay eggs. The temperature between 25 and 28 °C was the most suitable range for B. zonata reproduction and development. This shows that temperature has significant role in determining the climatic suitability for B. zonata in reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agarwal, M. L., Kumar, P., & Kumar, V. (1999). Population suppression of Bactrocera dorsalis (Hendel) by Bactrocera zonata (Saunders) (Diptera: Tephritidae) in North Bihar. Shaspa, 6(2), 189–191.

    Google Scholar 

  • Ahmed, A. A., El-Din, S., El-Din, E., El-Shazly, A., & Marwa, A. F. (2007). Contribution to the effect of temperature on some biological aspects of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae) reared on artificial diet. Bulletin of Entomolgical Society of Egypt, 84, 121–134.

    Google Scholar 

  • Briere, J. F., Pracros, P., Le Roux, A. Y., & Pierre, J. S. (1999). A novel rate model of temperature-dependent development for arthropods. Environmental Entomology, 28, 22–29.

    Article  Google Scholar 

  • Chang, C. L., Caceres, C., & Jang, E. B. (2004). A novel liquid larval diet and its rearing system for melon fly, Bactrocera cucurbitae (Coquillet) (Diptera: Tephritidae). Annals of the Entomological Society of America, 97, 524–528.

  • Choudhary, J. S., Kumari, A., Das, B., Maurya, S., & Kumar, S. (2012). Diversity and population dynamic of fruit flies species in methyl eugenol based parapheromone traps in Jharkhand region of India. Ecoscan, 1, 57–60.

    Google Scholar 

  • Curry, G. L., Fieldman, R. M., & Smith, K. C. (1978). A stochastic model for a temperature-dependent population. Theoretical Population Biology, 13, 197–213.

    Article  CAS  Google Scholar 

  • Duyck, P. F., Sterlin, J. F., & Quilici, S. (2004). Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research, 94, 89–93.

    Article  CAS  Google Scholar 

  • Ekesi, S., Nderitu, P. W., & Rwomushana, I. (2006). Field investigation, life history and demographic parameters of Bactrocera invadens Drews, Tsuruta and white, a new invasive fruit fly species in Africa. Bulletin of Entomological Research, 96, 379–386.

    PubMed  CAS  Google Scholar 

  • Fand, B. B., Tonnang, H. E. Z., Kumar, M., Kamble, A. L., & Bal, S. K. (2014). A temperature-based phenology model for predicting development, survival and population growth potential of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Protection, 55, 98–108.

    Article  Google Scholar 

  • Fand, B. B., Sul, N. T., Bal, S. K., & Minhas, P. S. (2015). Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One, 10(4), e0124682. https://doi.org/10.1371/journal.pone.0124682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes-Da-Silva, P. G., & Zucoloto, F. S. (1993). The influence of host nutritive value on the performance and food selection in Ceratitis capitata (Diptera, Tephritidae). Journal of Insect Physiology, 39, 883–887.

    Article  Google Scholar 

  • Fetoh, E.-S. A. B., Abdel Gawad, A. A., Shalaby, F. F., & Elyme, M. F. (2012). Temperature-dependent development and degree-days models of the peach fruit Fly Bactrocera zonata (Saunders) and the cucurbit Fly Dacus ciliatus (Loew). International Journal of Environmental Sciences and Engineering, 3, 85–96.

    Google Scholar 

  • Gupta, D., Verma, A. K., & Bhalla, O. P. (1990). Population of fruit-flies (Dacus zonatus and B. dorsalis) infesting fruit crops in north-western Himalayan region. Indian Journal of Agricultural Sciences, 60(7), 471–474.

    Google Scholar 

  • Hashem, A. G., Mohamed, S. M. A., & EI-Wakkad, M. F. (2001). Diversity and abundance of Mediterranean and peach fruit flies (Diptera: Tephritidae) in different horticultural orchards. Egyptian Journal of Applied Sciences, 16, 303–314.

    Google Scholar 

  • Kroschel, J., Sporleder, M., Tonnang, H. E. Z., Juarez, H., Carhuapoma, P., Gonzales, J. C., & Simon, R. (2013). Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology, 15, 228–241.

    Article  Google Scholar 

  • Logan, J. A., Wollkind, D. J., Hoyt, S. C., & Tanigoshi, L. K. (1976). An analytical model for description of temperature dependent phenomenon in arthropods. Environmental Entomology, 5, 1133–1140.

    Article  Google Scholar 

  • Mohamed, A. M. (2000). Effect of constant temperature on the development of the peach fruit fly, Bactrocera zonata (Saunder) (Diptera: Tephritidae). Assuit Journal of Agricultural Sciences, 31(2), 329–337.

    Google Scholar 

  • Ni, W. L., Li, Z. H., Chen, H. J., Wan, F. H., Qu, W. W., Zhang, Z., & Kriticos, D. J. (2012). Including climate change in pest risk assessment: The peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Bulletin of Entomological Research, 102, 173–183.

    Article  CAS  Google Scholar 

  • OEPP/EPPO. (2005). Data sheets on quarantine pests. OEPP/EPPO Bulletin, 35, 371–373.

    Article  Google Scholar 

  • Papadopoulos, N. T., Katsoyannos, B. I., & Carey, J. R. (2002). Demographic parameters of the Mediterranean fruit fly (Diptera: Tephritidae) reared in apple. Annals of the Entomological Society of America, 95(5), 564–569.

    Article  Google Scholar 

  • Qureshi, Z. A., Ashraf, M., Bughio, A. R., & Hussian, T. (1974). Rearing, reproductive behaviour and gamma sterilization of fruit fly, Dacus zonatus (Saund.) (Diptera- Tephritidae). Entomologia Experimentalis et Applicata, 17, 504–510.

    Article  Google Scholar 

  • Sanjeev, R., Uma, S., Bhagat, R. M., & Gupta, S. P. (2008). Population dynamics and succession of fruit fly on sub-tropical fruits under rainfed condition in Jammu region. Indian Journal of Entomology, 70(1), 12–15.

    Google Scholar 

  • Sharpe, P. J. H., Curry, G. L., & DeMichele, D. W. (1977). Distribution models of organism development times. Journal of Theoretical Biology, 66, 21–38.

    Article  CAS  Google Scholar 

  • Shinwari, I., Khan, S., Khan, M. A., Ahmad, S., Shah, S. F., Mashwani, M. A., & Khan, M. A. (2015). Evaluation of artificial larval diets for rearing of fruit fly Bactrocera zonata (Diptera: Tephritidae) under laboratory condition. Journal of Entomology and Zoological Studies, 3(4), 189–193.

    Google Scholar 

  • Sporleder, M., Kroschel, J., Gutierrez, Q. M. R., & Lagnaoui, A. (2004). A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae). Environmental Entomology, 33, 477–486.

    Article  Google Scholar 

  • Sporleder, M., Carhuapoma, P., Tonnang, E.Z.H., Juarez, H., Gamarra, H., Simon, R. & Kroschel, J. (2017). ILCYM - insect life cycle modeling. A software package for developing temperature-based insect phenology models with applications for local, regional and global analysis of insect population and mapping. Lima (Peru): International Potato Center. pp. 175.

  • Srinivasa Rao, M., Manimanjari, D., Rama Rao, C. A., Swathi, P., & Maheswari, M. (2014). Effect of climate change on Spodoptera litura fab. On peanut: A life table approach. Crop Protection, 66, 98–106.

    Article  Google Scholar 

  • Vargas, R. I., Walsh, W. A., Kanehisa, D. T., Jang, E. B., & Armstrong, J. W. (1997). Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America, 90, 162–168.

    Article  Google Scholar 

  • Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D., & Nishida, T. (2000). Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Annals of the Entomological Society of America, 93(1), 75–81.

    Article  Google Scholar 

  • Vayssières, J. F., Carel, Y., Coubes, M., & Duyck, P. F. (2008). Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environmental Entomology, 37(2), 307–314.

    Article  Google Scholar 

  • Wagner, T. L., Wu, H. I., Sharpe, P. J. H., & Coulson, R. N. (1984). Modelling distributions of insect development time: A literature review and application of the Weibull function. Annals of the Entomological Society of America, 77, 474–487.

    Article  Google Scholar 

  • Wang, R., Lan, Z., & Ding, Y. (1982). Studies on mathematical models of the relationship between insect development and temperature. Acta Ecologica Sinica, 2, 47–57.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Agriculture, Government of India through the National Innovations on Climate Resilient Agriculture (NICRA) project under the Indian Council of Agricultural Research (ICAR) (ICAR-RCER/RC R/E.F./2011/29). We authors are grateful to Dr Carhuapoma Pablo (CIP) and anonymous reviewers for giving valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaipal Singh Choudhary.

Ethics declarations

Disclosure statement

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, J.S., Mali, S.S., Naaz, N. et al. Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica 48, 1–13 (2020). https://doi.org/10.1007/s12600-019-00777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-019-00777-4

Keywords