Skip to main content
Log in

Biochemical changes in the Brassica juncea-fruticulosa introgression lines after Lipaphis erysimi (Kaltenbach) infestation

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Insect damage leads to changes in biochemical profile of plants. Response of three Brassica juncea-fruticulosa introgression lines (already reported resistant to Lipaphis erysimi) in terms of changes in biochemical constituents after aphid infestation was studied along with B. fruticulosa (resistant parent), B. juncea var. PBR −210 (susceptible parent) and B. rapa ecotype brown sarson BSH-1 (susceptible check). These six genotypes were grown under aphid infested and uninfested conditions and were sampled at peak aphid infestation to analyze the biochemical changes caused by aphid feeding from top 10 cm central twig of plant. A significant reduction in glucosinolates content in aphid infested plants of three introgression lines (I8, I79 and I82) was observed while opposite was observed in B. fruticulosa, PBR-210 and BSH-1. Exactly opposite trend was observed for total phenols where aphid infestation resulted in significant increase in phenols content in the three introgression lines while a decrease was observed in B. fruticulosa, PBR-210 and BSH-1. A general trend of decline in flavonols, total sugars and free amino acids content was observed after aphid infestation in all the genotypes. Glucosinolates and total phenols served as biochemical bases of resistance in the three introgression lines since there was downregulation of glucosinolates and upregulation of total phenols as against opposite trend observed in BSH-1 and PBR-210.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2016). Package of practices for crops of Punjab: Rabi, Directorate of Extension Education (pp. 44–53). Ludhiana: Punjab Agricultural University.

  • Atri, C., Kumar, B., Kumar, H., Kumar, S., Sharma, S., & Banga, S. S. (2012). Deveopment and characterization of Brassica juncea – fruticulosa introgression lines exhibiting resistance to mustard aphid, Lipaphis erysimi (Kaltenbach). BMC Genetics, 13, 104. https://doi.org/10.1186/1471-2156-13-104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balbaa, S. I., Zaki, A. Y., & El-Shamy, A. M. (1974). Total flavonoids and rutin content of the different organs of Sophora japonica L. Journal of Association of Official Analytical Chemists, 57, 752–755.

    CAS  Google Scholar 

  • Bones, A. M., Thangstad, O. P., Haugen, O., & Espevik, T. (1991). Fate of myrosin cells - characterization of monoclonal antibodies against myrosinase. Journal of Experimental Botany, 42, 1541–1549.

    Article  CAS  Google Scholar 

  • Bridges, M., Jones, A. M. E., Bones, A. M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Karapapa, V. K., Watts, N., & Rossiter, J. T. (2002). Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proceeding of Royal Society of London, 269, 187-191.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Ro, D. K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., & Tholl, D. (2004). Characterization of root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiology, 135, 1956–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corcuera, L. J. (1993). Biochemical basis for the resistance of barley to aphids. Phytochemistry, 33, 741–747.

    Article  CAS  Google Scholar 

  • Dixon, A. F. G. (1970). Stabilization of aphid population by aphid induced plant factor. Nature, 227, 1368–1369.

    Article  Google Scholar 

  • Douglas, A. E. (2006). Phloem-sap feeding by animals: Problems and solutions. Journal of Experimental Botany, 57, 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Dreyer, D. L., & Campbell, B. C. (1987). Chemical basis of host-plant resistance to aphids. Plant Cell and Environment, 10, 353–361.

    CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. P., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Eleftherianos, I., Vamvatsikos, P., Ward, D., & Gravanis. (2006). Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. Journal of Applied Entomology, 130(1), 15–19.

    Article  Google Scholar 

  • El-Khawas, S. A. M., & El-Khawas, M. A. M. (2008). Interactions between Aphis gossypii (Glov.) and the common predators in eggplant and squash fields, with evaluating the physiological and biochemical aspects of biotic stress induced by two different aphid species, infesting squash and cabbage plants. Australian Journal of Basic and Applied Science, 2(2), 183–193.

    CAS  Google Scholar 

  • Giamoustaris, A., & Mithen, R. (1995). The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Annals of Applied Biology, 126, 347–363.

    Article  CAS  Google Scholar 

  • Gill, R. S., & Bakhetia, D. R. C. (1985). Resistance of some Brassica napus and B. campestris strains to Lipaphis erysimi (Kalt.). Journal of Oilseeds Research, 2, 227–239.

    Google Scholar 

  • Goggin, F. L. (2007). Plant-aphid interactions: Molecular and ecological perspectives. Current Opinion in Plant Biology, 10, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Golawska, S., Kapusta, I., Lukasik, I., & Wojcicka, A. (2008). Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pesticides, 3-4, 71–77.

    Google Scholar 

  • Havlickova, H., Cvikrova, M., Eder, J., & Hrubcova, M. (1998). Alterations in the levels of phenolics and peroxidase activities induced by Rhopalosiphum padi (L.) in two winter wheat cultivars. Plant Disease Protection, 105, 140–148.

    CAS  Google Scholar 

  • Hegedus, D. D., & Erlandson, M. (2012). Genetics and genomics of insect resistance in Brassicaceae crops. In D. Edwards, J. Batley, I. Parkin, & C. Kole (Eds.), Genetics, genomics and breeding of oilseed brassicas (pp. 319–372). Taylor and Francis, New York: CRC Press.

    Google Scholar 

  • Hopkins, R. J., van Dam, N. M., & van Loon, J. J. A. (2009). Role of glucosinolates in insect plant relationships and multitrophic interactions. Annual Review of Entomology, 54, 57–83.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P., & Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta, 213, 164–174.

    Article  CAS  PubMed  Google Scholar 

  • Khattab, H. (2007). The defense mechanism of cabbage plant against phloem sucking aphid (Brevicoryne brassicae L.). Australian Journal of Basic and Applied Science, 1(1), 56–62.

    CAS  Google Scholar 

  • Kissen, R., Rossiter, J. T., & Bones, A. M. (2009). The “mustard oil bomb”: Not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochemical Review, 8, 69–86.

    Article  CAS  Google Scholar 

  • Kumar, S., & Sangha, M. K. (2013). Biochemical mechanism of resistance in some Brassica genotypes against Lipaphis erysimi (Kaltenbach) (Homoptera: Aphidiae). Vegetos, 2(2), 387–395.

    Google Scholar 

  • Kumar, S., Atri, C., Sangha, M. K., & Banga, S. S. (2011). Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica, 179(3), 461–470.

    Article  Google Scholar 

  • Kumar, S., Singh, Y. P., Singh, S. P., & Singh, R. (2017). Physical and biochemical aspects of host plant resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) in rapeseed-mustard. Arthropod-Plant Interactions, 11, 551–559. https://doi.org/10.1007/s11829-016-9492-2.

    Article  Google Scholar 

  • McGhee, J. F., Kirk, L. D., & Mustake, G. C. (1965). Method for determination of thioglucosides in Crambe abyssinica. Journal of the American Oil Chemists’ Society, 42, 889–891.

    Article  CAS  Google Scholar 

  • Mewis, I., Appel, H. M., Hom, A., Raina, R., & Schultz, J. C. (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology, 138, 1149–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, P. J., & Thompson, G. A. (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 125, 1074–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morkunas, I., & Ratajczak, L. (2014). The role of sugar signalling in plant defense response against fungal pathogens. Acta Physiologiae Plantarum, 36, 1607–1619.

    Article  CAS  Google Scholar 

  • Nielsen, J. K. (1978). Host plant discrimination within Cruciferae: Feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomologia Experimentalis et Applicata, 24, 41–54.

    Article  CAS  Google Scholar 

  • Onyilagha, J. C., Lazorko, J., Gruber, M. Y., Soroka, J. J., & Erlandson, M. A. (2004). Effect of flavonoids on feeding preference and development of the crucifer pest Mamestra configurata Walker. Journal of Chemical Ecology, 30, 109–124.

    Article  CAS  PubMed  Google Scholar 

  • Palial, S. (2017). Mechanism of introgressed resistance in Brassica juncea against Lipaphis erysimi (Kaltenbach). M.Sc. Thesis, Punjab Agricultural University, Ludhiana, 77p.

  • Park, S. J., Huang, Y., & Ayoubi, P. (2005). Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis. Planta, 223, 932–947.

    Article  CAS  PubMed  Google Scholar 

  • Ramdhari, Yadava, T. P., Singh, H., Rohilla, H. R., & Gupta, S. K. (1994). Effect of bio-chemical and anatomical traits of Indian mustard on mustard aphid, Lipaphis erysimi (Kalt.) infestation. Annal of Agricultural Research, 16, 512–513.

    Google Scholar 

  • Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., & Meijer, J. (2000). Myrosinase: Gene family evolution and herbivore defence in Brassicaceae. Plant Molecular Biology, 42, 93–113.

    Article  CAS  PubMed  Google Scholar 

  • Renwick, J. A. A. (2002). The chemical world of crucivores: Lures, treats and traps. Entomologia Experimentalis et Applicata, 104, 35–42.

    Article  CAS  Google Scholar 

  • Rossiter, J. T., Jones, A. M., & Bones, A. M. (2003). A novel myrosinase-glucosinolate defense system in cruciferous specialist aphids. Recent Advances in Phytochemistry, 37, 127–142.

    Article  CAS  Google Scholar 

  • Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics induced oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., & Manners, J. M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 11655–11660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, Y. P., & Sharma, K. C. (2002). Integrated approach to manage the mustard aphid Lipaphis erysimi (Homotera: Aphididae) in oilseed Brassica crops-a review. Journal of Amphibiology, 16, 77–88.

    Google Scholar 

  • Singh, D., Kumar, V., & Kumar, D. (2000). Inheritance of mustard aphid, Lipaphis erysimi (Kalt.) tolerance in Indian mustard (Brassica juncea). Annals of Biology, 16, 145–148.

    Google Scholar 

  • Smallegange, R., van Loon, J., Blatt, S., Harvey, J., Agerbirk, N., & Dicke, M. (2007). Flower vs. leaf feeding by Pieris brassicae: Glucosinolate rich flower tissues are preferred and sustain higher growth rate. Journal of Chemical Ecology, 33, 1831–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soylu, S. (2006). Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Science, 170, 942–952.

    Article  CAS  Google Scholar 

  • Spices, J. R. (1957). Colorimetric procedure for amino acids. In S. P. Calowick & N. O. Kalpan (Eds.), Methods in enzymology (468p). New York: Academic Press.

    Google Scholar 

  • SPSS. (2011). IBM SPSS for windows, version 20.0. Armonk: IBM Corp.

    Google Scholar 

  • Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domesticus: The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63–68.

    Article  CAS  Google Scholar 

  • Thoison, O., Sevenet, T., Niemeyer, H. M., & Russell, G. B. (2004). Insect antifeedant compounds from Nothofagus dombeyi and N. pumilio. Phytochemistry, 65, 2173–2176.

    Article  CAS  PubMed  Google Scholar 

  • Urbanska, A., Tjallingii, W. F., Dixon, A. F. G., & Leszczynski, B. (1998). Phenol oxidising enzymes in the grain aphid’s saliva. Entomologia Experimentalis et Applicata, 86, 197–203.

    Article  CAS  Google Scholar 

  • van Emden, H. F., & Harrington, R. (2007). Aphids as crop pests. CABI, Wallingford, U.K.

  • Vos, M. D., Oosten, V. R. V., Van Poecke, R. M. P., Van Pelt, J. A., Pozo, M. J., Antony, J. M. M. J., Buchala, A. J., Metraux, J. P., van Loon, L. C., Dicke, M., & Pieterse, C. M. J. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 18, 923–937.

    Article  CAS  PubMed  Google Scholar 

  • Wool, D., & Hales, D. F. (1996). Previous infestation affects recolonization of cotton by Aphis gossypii: Induced resistance or plant damage? Phytoparasitica, 24, 39–48.

    Article  Google Scholar 

  • Xu, L., & Liang, R. (2016). Biochemical responses of resistant and susceptible wheat cultivars to English grain aphid (Sitobion avenae F.) at grain-filling stage. Academia Journal of Biotechnology, 4(7), 276–284.

    CAS  Google Scholar 

  • Zhang, T. W., & Liu, C. Z. (2011). Influences of Rhopalosiphum padi on oxidases of three wheat seedlings. Plant Protection, 37(4), 72–75.

    Google Scholar 

  • Zhao, T. J., Liu, Y., Yan, Y. B., Feng, F., Liu, W. Q., & Zhou, H. M. (2007). Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Letters, 581, 3044–3050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The supply of seed material from Dr. SS Banga, ICAR National Professor, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Palial.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palial, S., Kumar, S. & Sharma, S. Biochemical changes in the Brassica juncea-fruticulosa introgression lines after Lipaphis erysimi (Kaltenbach) infestation. Phytoparasitica 46, 499–509 (2018). https://doi.org/10.1007/s12600-018-0686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-018-0686-2

Keywords

Navigation