Skip to main content
Log in

Insecticidal effect of juglone and its disturbance analysis in metabolic profiles of Aphis gossypii glover using 1H NMR-based metabonomics approach

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Juglone shows a wide range of biological activities but its insecticidal effect and mechanism on Aphis gossypii has not been reported up to now. In this study, on the basis of insecticidal effect research, a 1H NMR-based hemolymph metabonomics analysis approach was applied to comprehensively and holistically investigate the toxic mechanism of juglone on A. gossypii. The sublethal effect of juglone was administered to A. gossypii Glover up to 12 h post treatment with the healthy insects as controls. By means of pattern recognition analysis, the metabolic profile of juglone treatment group was clearly distinct from that of control group. On the basis of biochemical traits measurement of A. gossypii hemolymph, the variations of a number of metabolites such as glucose, trehalose, betaine, valine, alanine, lactate, taurine, dimethylamine, and putrescine were determined and discussed. These results revealed that the juglone caused a disturbance of A. gossypii physiology by affecting its metabolomics profile of hemolymph. The current work may provide valuable clues for understanding the insecticidal mechanisms of juglone, as well as show the potential power of the combination of the NMR technique and the pattern recognition method for pesticide biochemistry research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott, N. J., & Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Akhtara, Y., Ismana, M. B., Lee, C. H., Lee, S. G., & Lee, H. S. (2012). Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Industrial Crops and Products, 37, 536–541.

    Article  CAS  Google Scholar 

  • Aliferis, K. A., Copley, T., & Jabaji, S. (2012). Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. Journal of Insect Physiology, 58, 1349–1359.

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum, M. J., & Gilbert, L. I. (1990). Juvenile hormone stimulation of ornithine decarboxylase activity during vitellogenesis in Drosophila melanogaster. Journal of Comparative Physiology B, 160, 145–151.

    Article  CAS  Google Scholar 

  • Brinzer, R. A., Henderson, L., Marchiondo, A. A., Woods, D. J., Davies, S. A., & Dow, J. A. T. (2015). Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. Insect Biochemistry and Molecular Biology, 67, 74–86.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, S., Sinha, K., Banerjee, S., & Sil, P. C. (2016). Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors, 42, 647–664.

    Article  CAS  PubMed  Google Scholar 

  • Damianakos, H., Kretschmer, N., Sykłowska-Baranek, K., Pietrosiuk, A., Bauer, R., & Chinou, I. (2012). Antimicrobial and cytotoxic isohexenylnaphthazarins from Arnebia euchroma (Royle) Jonst. (Boraginaceae) callus and cell suspension culture. Molecules, 17, 14310–14322.

    Article  CAS  PubMed  Google Scholar 

  • Dang, Q. L., Lee, G. Y., Choi, Y. H., Choi, G. J., Jang, K. S., Park, M. S., Soh, H. S., Han, Y. H., Lim, C. H., & Kim, J. C. (2010). Insecticidal activities of crude extracts and phospholipids from Chenopodium ficifolium against melon and cotton aphid, Aphis gossypii. Crop Protection, 29, 1124–1129.

    Article  CAS  Google Scholar 

  • Etebari, K., Bizhannia, A. R., Sorati, R., & Matindoost, L. (2007). Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pesticide Biochemistry and Physiology, 88, 14–19.

    Article  CAS  Google Scholar 

  • Hackett, M. J., Paterson, P. G., Pickering, I. J., & George, G. N. (2016). Imaging taurine in the central nervous system using chemically specific x-ray fluorescence imaging at the sulfur k-edge. Analytical Chemistry, 88, 10916–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook, I., Mills, C., & Sheridan, H. (2014). Bioactive naphthoquinones from higher plants. Studies in Natural Products Chemistry, 41, 119–160.

    Article  CAS  Google Scholar 

  • Hu, W. Y., Du, W. X., Bai, S. M., Lv, S. T., & Chen, G. (2018). Phenoloxidase, an effective bioactivity target for botanical insecticide screening from green walnut husks. Natural Product Research. https://doi.org/10.1080/14786419.2017.1380015.

  • Koo, H. N., An, J. J., Park, S. E., Kim, J. I., & Kim, G. H. (2014). Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protection, 55, 91–97.

    Article  CAS  Google Scholar 

  • Koo, H. N., Lee, S. W., Yun, S. H., Kim, H. K., & Kim, G. H. (2015). Feeding response of the cotton aphid, Aphis gossypii, to sublethal rates of flonicamid and imidacloprid. Entomologia Experimentalis et Applicata, 154, 110–119.

    Article  CAS  Google Scholar 

  • Kubo, I., Kinst, H. I., Nihei, K., Soria, F., Takasaki, M., Caldern, J. S., & Céspedes, C. L. (2003). Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects. Zeitschrift für Naturforschung. Section C, 58, 719–725.

    Article  CAS  Google Scholar 

  • Lenz, E. M., Ilson, I. D., Hagele, B. F., & Simpson, S. J. (2001). High resolution 1H NMR spectroscopic studies of the composition of the haemolymph of crowd- and solitary-reared nymphs of the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 32, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. Q., Zhang, S. A., Luo, J. Y., Wang, C. Y., Lv, L. M., Dong, S. L., & Cui, J. J. (2013). Ecological adaption analysis of the cotton aphid (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS One, 8, 1–10.

    Google Scholar 

  • Machalova, Z., Sajfrtova, M., Pavela, R., & Topiar, M. (2015). Extraction of botanical pesticides from Pelargonium graveolens using supercritical carbon dioxide. Industrial Crops and Products, 67, 310–317.

    Article  CAS  Google Scholar 

  • Nath, B. S. (2000). Changes in carbohydrate metabolism in hemolymph and fat body of the silkworm, Bombyx mori L, exposed to organophosphorus insecticides. Pesticide Biochemistry and Physiology, 68, 127–137.

    Article  CAS  Google Scholar 

  • Norichika, M., Kazuhiro, M., Masami, N., & Yoshiaki, K. (2003). High concentrations of trehalose in aphid hemolymph. Applied Entomology and Zoology, 38, 241–248.

    Article  Google Scholar 

  • Pan, Y., Peng, T. F., Gao, X. W., Zhang, L., Yang, C., Xi, J. H., Xin, X. C., Bi, R., & Shang, Q. L. (2015). Transcriptomic comparison of thiamethoxam-resistance adaptation in resistant and susceptible strains of Aphis gossypii glover. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 13, 10–15.

    CAS  Google Scholar 

  • Pan, Y. O., Chai, P. J., Zheng, C., Xu, H. F., Wu, Y. Q., Gao, X. W., Xi, J. H., & Shang, Q. L. (2018). Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii glover. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2018.04.015.

    Article  CAS  PubMed  Google Scholar 

  • Phalaraksh, C., Lenz, E. M., Lindon, J. C., Nicholson, J. K., Farrant, R. D., Reynold, S. E., Wilson, I. D., Osborn, D., & Weeks, J. M. (1999). NMR spectroscopic studies on the haemolymph of the tobacco hornworm, Manduca sexta: Assignment of 1H and 13C-NMR spectra. Insect Biochemistry and Molecular Biology, 29, 795–805.

    Article  CAS  Google Scholar 

  • Phalaraksh, C., Reynolds, S. E., & Wilson, I. D. (2008). A metabonomic analysis of insect development: 1H-NMR spectroscopic characterization of changes in the composition of the haemolymph of larvae and pupae of the tobacco hornworm, Manduca sexta. Education and Training of the Mentally Retarded, 34, 279–286.

    CAS  Google Scholar 

  • Piskorski, R., & Dorn, S. (2011). How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone. Journal of Insect Physiology, 57, 744–750.

    Article  CAS  PubMed  Google Scholar 

  • Ren, X. W. (1997). Dendrological (north) (p. 48). Beijing: Chinese Forestry Press.

    Google Scholar 

  • Schock, T. B., Stancyk, D. A., Thibodeaux, L., Burnett, K. G., Burnett, L. E., Boroujerdi, A. F., & Bearden, D. W. (2010). Metabolomic analysis of Atlantic blue crab, Callinectes sapidus, hemolymph following oxidative stress. Metabolomics, 6, 250–262.

    Article  CAS  Google Scholar 

  • Song, X. F., Wang, J. S., Wang, P. R., Tian, N., Yang, M. H., & Kong, L. Y. (2013). 1H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. Journal of Pharmaceutical and Biomedical Analysis, 78, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Sun, M. L., Wang, Y. M., Song, Z. Q., & Fang, G. Z. (2007). Insecticidal activities and active component of the alcohol extract from green peel of Juglans mandshurica. Forest Research, 18, 62–64.

    Article  CAS  Google Scholar 

  • Thiboldeaux, R. L., Lindroth, R. L., & Tracy, J. W. (1994). Differential toxicity of juglone (5-hydroxy-1, 4-naphthoquinone) and related naphthoquinones to Saturniid moths. Journal of Chemical Ecology, 20, 1631–1641.

    Article  CAS  PubMed  Google Scholar 

  • Thiboldeaux, R. L., Lindroth, R. L., & Tracy, J. W. (1998). Effects of juglone (5-hydroxy-1, 4-naphthoquinone) on midgut morphology and glutathione status in Saturniid moth larvae. Comparative Biochemistry and Physiology Part C, 120, 481–487.

    CAS  Google Scholar 

  • Timbrell, J. A. (1981). Biomarkers in toxicology. Toxicology, 129, 1–12.

    Article  Google Scholar 

  • Wang, Y. C. (2001). Insect biochemistry. In Y. C. Wang (Ed.), The intermediate metabolism of insects (pp. 92–93). Beijing: China Agriculture Press.

    Google Scholar 

  • Wang, Y. C. (2004). Insect physiology. In Z. J. Han (Ed.), Respiration and energy metabolism (pp. 121–123). Beijing: China Agriculture Press.

    Google Scholar 

  • Wang, N., Zhang, Z. C., Wang, M. Q., Wu, S. B., Li, H., & Zhang, G. A. (2008). Effects of putrecine on development and activities of protective enzymes of diamondback moth. Plutella xylostella. Chinese Bulletin of Entomology, 45, 573–576.

    CAS  Google Scholar 

  • Wang, H. P., Liang, Y. J., Sun, Y. J., Chen, J. X., Hou, W. Y., Long, D. X., & Wu, Y. J. (2013). 1H NMR-based metabonomic analysis of the serum and urine of rats following subchronic exposure to dichlorvos, deltamethrin, or a combination of these two pesticides. Chemico-Biological Interactions, 203, 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. Q., Xu, H. F., Pan, Y. O., Gao, X. W., Xi, J. H., Zhang, J. H., & Shang, Q. L. (2018). Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii glover. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S. H. (1986). The research of toxic constituent in Juglans mandshurica maxim. Journal of Shenyang Agricultural University, 17, 34–39.

    Google Scholar 

  • Zanardi, O. Z., Ribeiro, L. P., Ansante, T. F., Santos, M. S., Bordini, G. P., Yamamoto, P. T., & Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67, 160–167.

    Article  Google Scholar 

  • Zeisel, S. H. (1981). Dietary choline: Biochemistry, physiology, and pharmacology. Annual Review of Nutrition, 1, 95–121.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Li, Q., Meng, Q., Yue, C., & Xu, C. (2017). Identification and expression of cysteine sulfinate decarboxylase, possible regulation of taurine biosynthesis in Crassostrea gigas in response to low salinity. Scientific Reports, 7, 5505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC No. 21272023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Chen.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, ST., Du, WX., Bai, SM. et al. Insecticidal effect of juglone and its disturbance analysis in metabolic profiles of Aphis gossypii glover using 1H NMR-based metabonomics approach. Phytoparasitica 46, 521–531 (2018). https://doi.org/10.1007/s12600-018-0682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-018-0682-6

Keywords

Navigation