Skip to main content
Log in

Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The cotton ecosystem comprises various arthropod pest and natural enemies with simultaneous occurrence irrespective of growing region. The use of insecticides with reduced impact on natural enemies is a major goal to conserve them and, therefore, to reduce populations of arthropod pests. The survival of twelve key natural enemies for cotton pest management exposed to dried residues using the highest and lowest recommended rates representing old and new insecticides recommended to control cotton pests (chlorantraniliprole, chlofernapyr, spinosad, lambda-cyhalotrin, methidathion, pymetrozine, and thiamethoxam) was determined. The study included parasitoids [Aphelinus gossypii Timberlake, Bracon vulgaris Ashmead, Lysiphlebus testaceipes (Cresson), Telenomus podisi (Ashmead), Trichogramma pretiosum (Riley)] and predators [Hippodamia convergens Guérin-Méneville, Euborellia annulipes (Lucas), Podisus nigrispinus (Dallas), Solenopsis invicta Buren), Orius insidiosus (Say), Chrysoperla externa Hagen and Eriopis connexa (Germar)], with two different cohorts for these last two species. All natural enemies exposed to methidathion exhibited 100% mortality. Thiamethoxam, lambda-cyhalothrin and chlorfenapyr also caused high mortality of P. nigrispinus, S. invicta, H. convergens, O. insidiosus and all tested parasitoids. Among the natural enemies, E. annulipes exhibited high survival when exposed to all tested insecticides, except methidathion. Chlorantraniliprole and pymetrozine caused overall lower impact on the natural enemies tested followed by spinosad; hence, they are options for cotton pest management. Furthermore, the outcomes highlight the implication of knowing the background susceptibility of the species tested when addressing the impact of insecticides on natural enemies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashfaq, S., Khan, I. A., Saljoqi, A. U. R., Ahmad, S., Manzoor, F., Sohail, K., Habib, K., & Sadozai, A. (2011). Population dynamics of insect pests of cotton and their natural enemies. Sarhad Journal of Agricultural, 27, 251–253.

    Google Scholar 

  • Barros, E. M., Torres, J. B., Ruberson, J. R., & Oliveira, M. D. (2010). Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomologia Experimentalis et Applicata, 137, 237–245.

    Article  Google Scholar 

  • Bartell, D. P., Sanborn, J. R., & Wood, K. A. (1976). Insecticide penetration of cocoons containing diapausing and nondiapausing Bathyplectes curculionis, an endoparasite of the alfalfa weevil. Environmental Entomology, 5, 659–661.

    Article  CAS  Google Scholar 

  • Bartlett, B. R. (1968). Outbreaks of two-spotted spider mites and cotton aphids following pesticide treatment. I. Pest stimulation vs. natural enemy destruction as the cause of outbreaks. Journal of Economic Entomology, 61, 297–303.

    Article  CAS  Google Scholar 

  • Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. F., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., & Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35, 1199–1215.

    Article  Google Scholar 

  • Bastos CS, Torres JB (2003) Controle Biológico como Opção no Manejo de Pragas do Algodoeiro. Embrapa (Circular Técnica n. 72), Campina Grande, PB, Brasil.

  • Bélot JL, Barros EM, Miranda JE (2016) Riscos e oportunidades: o bicudo-do-algodoeiro. In: Associação Mato-grossense dos Produtores de Algodão (org), Desafios do Cerrado: como sustentar a expansão da produção com produtividade e competitividade. Instituto Brasileiro do Algodão, Cuiabá, Brasil, pp 77–118.

  • Biondi, A., Mommaerts, V., Smagghe, G., Viñuela, E., Zappalà, L., & Desneux, N. (2012). The non-target impact of spinosyns on beneficial arthropods. Pest Management Science, 68, 1523–1536.

    Article  PubMed  CAS  Google Scholar 

  • Biondi, A., Campolo, O., Desneux, N., Siscaro, G., Palmeri, V., & Zappalà, L. (2015). Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere, 128, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Bortoli, S. A., Ferreira, R. J., Miranda, J. E., & Oliveira, J. E. M. (2002). Suscetibilidade de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) a karate (Lambda-cialotrina) em condições de laboratório. Boletín de Sanidad Vegetal Plagas, 28, 577–584.

    Google Scholar 

  • Bozsik, A. (2006). Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. Pest Management Science, 62, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Brugger, K. E., Cole, P. G., Newman, I. C., Parker, N., Scholz, B., Suvagia, P., Walker, G., & Hammond, T. G. (2010). Selectivity of chlorantraniliprole to parasitoid wasps. Pest Management Science, 66, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • Bueno, A. F., Carvalho, G. A., Santos, A. C., Sosa-Gómez, D. R., & Silva, D. M. (2017). Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Ciênc Rural, 47(06), e20160829.

    Article  Google Scholar 

  • Bundy, C. S., & McPherson, R. M. (2000). Dynamics and seasonal abundance of stink bugs (Heteroptera: Pentatomidae) in a cotton-soybean ecosystem. Journal of Economic Entomology, 93, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Castro, A. A., Corrêa, A. S., Legaspi, J. C., Guedes, R. N. C., Serrão, J. E., & Zanuncio, J. C. (2013). Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere, 94, 1043–1050.

    Article  CAS  Google Scholar 

  • Cordeiro, E. M. G., Corrêa, A. S., Venzon, M., & Guedes, R. N. C. (2010). Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere, 81, 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  • Cordova, D., Benner, E. A., Sacher, M. D., Rauh, J. J., Sopa, J. S., Lahm, G. P., Selby, T. P., Stevenson, T. M., Flexner, L., Gutteridge, S., Rhoades, D. F., Wu, L., Smith, R. M., & Tao, Y. (2006). Anthranilic diamides: a new class of insecticides with a novel mode of action ryanodine receptor activation. Pesticide Biochemistry and Physiology, 84, 196–214.

    Article  CAS  Google Scholar 

  • Costa, P. M. G., Torres, J. B., Rondelli, V. M., & Lira, R. (2018). Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa. Bulletin of Entomological Research. https://doi.org/10.1017/S0007485317000888.

  • Croft, B. A. (1990). Arthropod biological control agents and pesticides. New York: Wiley.

    Google Scholar 

  • Degrande, P. E. (1998). Guia prático de controle das pragas do algodoeiro. Dourados: UFMS.

    Google Scholar 

  • van Den Bosch, R., & Hagen, K. S. (1966). Predaceous and parasitic arthropods in California cotton fields. Texas Agricultural Experimental Station Bulletin, 820, 1–32.

    Google Scholar 

  • van Den Bosch, R., & Stern, V. M. (1962). The integration of chemical and biological control in arthropod pests. Annual Review of Entomology, 7, 367–386.

    Article  Google Scholar 

  • Eveleens, K. G., Van den Bosch, R., & Ehler, L. E. (1973). Secondary outbreak induction of beet armyworm by experimental insecticide applications in cotton in California. Environmental Entomology, 2, 497–503.

    Article  CAS  Google Scholar 

  • Ferreira, A. J., Carvalho, G. A., Botton, M., Mendonça, L. A., & Corrêa, A. R. B. (2005). Seletividade de inseticidas usados na cultura da macieira a ovos de Chrysoperla externa (Hagen 1861) (Neuroptera: Chrysopidae). Ciênc Rural, 35, 756–762.

    Article  CAS  Google Scholar 

  • Fritz LL, Heinrichs EA, Machado V, Andreis TF, Pandolfo M, Salles SM, Oliveira JV, Fiuza LM (2013) Impact of lambdacyhalothrin on arthropod natural enemy populations in irrigated rice fields in southern Brazil. Faculty Publications: Department of Entomology. 366. Available at: http://digitalcommons.unl.edu/entomologyfacpub/366. Accessed on 10 March 2018.

  • Garzón, A., Medina, P., Amor, F., Viñuela, E., & Budia, F. (2015). Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere, 132, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, L., Rosenheim, J. A., & Goodell, P. B. (2000). Cotton aphid emerges as major pest in SJV cotton. California Agriculture, 54, 26–29.

    Article  Google Scholar 

  • Godoy, M. S., Carvalho, G. A., Moraes, J. C., Moraes, A. A., & Cosme, L. V. (2004). Seletividade de inseticidas utilizados na cultura dos citros para ovos e larvas de Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotropical Entomology, 33, 639–646.

    Article  CAS  Google Scholar 

  • Gontijo, P. C., Moscardini, V. F., Michaud, J. P., & Carvalho, G. A. (2015). Non-target effects of two sunflower seed treatments on Orius insidiosus (Hemiptera: Anthocoridae). Pest Management Science, 71, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Gradish, A. E., Scott-Dupree, C. D., Schipp, L., Harris, C. R., & Ferguson, G. (2011). Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Management Science, 67, 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Gross, K., & Rosenheim, J. A. (2011). Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecological Applications, 21, 2770–2780.

    Article  PubMed  Google Scholar 

  • Han, P., Niu, C. Y., & Desneux, N. (2014). Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China. PLoS One, 9, e102980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haney PB, Lewis WJ, Lambert WR (2009) Cotton production and the boll weevil in Georgia: history cost of control and benefits of eradication. College of Agricultural and Environmental Sciences, The University of Georgia (Res. Bull. 428), Athens, GA, USA.

  • Hodek I (1973) Biology of Coccinellidae. Academia Czechoslovak Academy of Science, Prague, Czechoslovak.

  • Johnson, M. W., & Tabashnik, B. E. (1999). Enhanced biological control through pesticide selectivity. In T. S. Bellows & T. W. Fisher (Eds.), Handbook of biological control (pp. 297–317). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Khan, M. A., & Ruberson, J. R. (2017). Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Management Science, 73, 2465–2472.

  • Kilpatrick, A. L., Hagerty, A. M., Turnipseed, S. G., Sullivan, M. J., & Bridges Jr., W. C. (2005). Activity of selected neonicotinoids and dicrotophos on nontarget arthropods in cotton: implications in insect management. Journal of Economic Entomology, 98, 814–820.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, K., Takeda, M., & Hamamura, T. (2007). Insecticide susceptibility of a generalist predator Labidura reiparia (Dermaptera: Labiduridae). Applied Entomology and Zoology, 42, 501–505.

    Article  CAS  Google Scholar 

  • Kristinsson, H. (1994). Pymetrozine: a new insecticide. In Briggs (Ed.), Advances in the chemistry of insect control III (pp. 85–102). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Liu, E. M., & Huang, J. (2013). Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics, 103, 202–215.

    Article  Google Scholar 

  • Liu, X., Chen, M., Collins, H. L., Onstad, D. W., Roush, T., Zhang, Q., Earles, E. D., & Shelton, A. M. (2014). Natural enemies delay insect resistance to Bt crops. PLoS One, 9, e90366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Li, X., Zhou, C., Liu, F., & Mu, W. (2016). Toxicity of nine insecticides on four natural enemies of Spodoptera exigua. Scientific Reports, 6, 39060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovell, J. B., Wright, D. P., Gard, I. E., Miller, T. P., Treacy, M. F., Addor, R. W., & Kamhi, V. M. (1990). An insecticide/acaracide from a novel class of chemistry. Brighton Crop Protection Conference, 3, 37–42.

    Google Scholar 

  • Luna, R. F., Bestete, L. R., Torres, J. B., & Silva-Torres, C. S. A. (2018). Predation and behavioral changes in the neotropical lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exposed to lambda-cyhalothrin. Ecotoxicology. https://doi.org/10.1007/s10646-018-1949-x.

  • MAPA Ministério da Agricultura e Pecuária (2014) Sistema de Agrotóxicos Fitossanitários. Available at: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons . Accessed on 8 January 2015.

  • Martin, E. A., Reineking, B., Seo, B., & Steffan-Dewenter, I. (2013). Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 110, 5534–5539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills, N. J., Beers, E. A., Shearer, P. W., Unruh, T. R., & Amarasekare, K. G. (2015). Comparative analysis of pesticide effects on natural enemies in western orchards: A synthesis of laboratory bioassay data. Biological Control, 102, 17–25.

    Article  CAS  Google Scholar 

  • Mironidis, G. K., Kapantaidaki, D., Bentila, M., Morou, E., Savopoulou-Soultani, M., & Vontas, J. (2013). Resurgence of the cotton bollworm Helicoverpa armigera in northern Greece associated with insecticide resistance. Insect Sci., 20, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Moura, A. P., Carvalho, G. A., Moscardini, V. F., Lasmar, O., Rezende, D. T., & Marques, M. C. (2010). Selectivity of pesticides used in integrated apple production to the lacewing, Chrysoperla externa. Journal of Insect Science, 10, 1–21.

    Article  Google Scholar 

  • Pathan, A. K., Sayyed, A. H., Aslam, M., Razaq, M., Jilani, G., & Saleem, M. A. (2008). Evidence of field-evolved resistance to organophosphates and pyrethroids in Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Economic Entomology, 101, 1676–1684.

    Article  PubMed  CAS  Google Scholar 

  • Pekár, S. (2012). Spiders (Araneae) in the pesticide world: an ecotoxicological review. Pest Management Science, 68, 1438–1446.

    Article  PubMed  CAS  Google Scholar 

  • Ramalho, F. S., & Wanderley, P. A. (1996). Ecology and management of the boll weevil in South American cotton. American Entomologist, 42, 41–47.

    Article  Google Scholar 

  • Rimoldi, F., Fogel, M. F., Ronco, A. E., Schneider, M. I. (2017). Comparative susceptibility of two Neotropical predators, Eriopis connexa and Chrysoperla externa, to acetamiprid and pyriproxyfen: Short and long-term effects after egg exposure. Environmental Pollution, 231, 1042–1050.

  • Roberts, P. (2015). Insect management. In G. Collins (Ed.), Georgia cotton production guide (pp. 27–39). Tifton: The University of Georgia, College of Agricultural and Environmental Sciences.

    Google Scholar 

  • Rodrigues, A. R. S., Spíndola, A. F., Torres, J. B., Siqueira, H. A. A., & Colares, F. (2013). Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicology and Environmental Safety, 96, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, A. R. S., Siqueira, H. A. A., & Torres, J. B. (2014). Enzymes mediating resistance to lambda-cyhalothrin in Eriopis connexa (Coleoptera: Coccinellidae). Pesticide Biochemistry and Physiology, 110, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Roubos, C. R., Rodriguez-Saona, C., Holdcraft, R., Mason, K. S., & Isaacs, R. (2014). Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. Journal of Economic Entomology, 107, 277–285.

    Article  PubMed  Google Scholar 

  • Santos, K. F. A., Zanardi, O. Z., Morais, M. R., Jacob, C. R. O., Oliveira, M. B., & Yamamoto, P. T. (2017). The impact of six insecticides commonly used in control of agricultural pests on the generalist predator Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere, 186, 218–226.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute. (2002). SAS/STAT User’s guide version 9.00 9.00 (TS M0). Cary: SAS Institute Inc..

    Google Scholar 

  • Sechser, B., Bougeois, F., Reber, B., & Wesiak, H. (1994). The integrated control of whiteflies and aphis on tomatoes in glasshouses with pymetrozine. Medical Faculty Landbouw University Ghent, 59, 579–583.

    CAS  Google Scholar 

  • Spíndola, A. F., Silva-Torres, C. S. A., Rodrigues, A. R. S., & Torres, J. B. (2013). Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide. Bulletin of Entomological Research, 103, 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J., & Preetha, G. (2016). Pesticide toxicity to non-target organisms: exposure, toxicity and risk assessment methodologies. Dordrecht: Springer.

    Book  Google Scholar 

  • StatSoft (2006) Statistica (data analysis software system) version 7.1 StatSoft. Inc. www.statsoft.com

  • Stern, V. M., Smith, R. R. F., van den Bosch, R., & Hagen, K. S. (1959). The integrated control concept. Hilgardia, 29, 81–101.

    Article  CAS  Google Scholar 

  • Sujii, E. R., Lövei, G. L., Sétamou, M., Silvie, P., Fernandes, M. G., Dubois, G. S. J., & Almeida, R. P. (2006). Non-target and biodiversity impacts on non-target herbivorous pests. In A. Hilbeck, D. A. Andow, & F. EMG (Eds.), Environmental risk assessment of genetically modified organisms volume 2: methodologies for assessing Bt cotton in Brazil (pp. 133–154). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Talebi, K., Kavousi, A., & Sabahi, Q. (2008). Impacts of pesticides on arthropod biological control agents. Pest Technology, 2, 87–97.

    Google Scholar 

  • Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45, 247–248.

    Article  PubMed  CAS  Google Scholar 

  • Torres, J. B., & Ruberson, J. R. (2005). Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environmental Entomology, 34, 1242–1256.

    Google Scholar 

  • Torres, J. B., De Clercq, P., & Barros, R. (1999). Effect of spinosad on the predator Podisus nigrispinus and its lepidopterous prey. Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit Gent, 64, 211–218.

    CAS  Google Scholar 

  • Torres, J. B., Silva-Torres, C. S. A., Silva, M. R., & Ferreira, J. F. (2002). Compatibilidade de inseticidas e acaricidas com o percevejo predador Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) em algodoeiro. Neotropical Entomology, 31, 311–317.

    Article  CAS  Google Scholar 

  • Torres, J. B., Silva-Torres, C. S. A., & Oliveira, J. V. (2003a). Toxicity of pymetrozine and thiamethoxam to Aphelinus gossypii and Delphastus pusillus. Pesquisa Agropecuária Brasileira, 38, 459–466.

    Article  Google Scholar 

  • Torres, J. B., Silva-Torres, C. S. A., & Barros, R. (2003b). Relative effects of the insecticide thiamethoxam on the predator Podisus nigrispinus and the tobacco whitefly Bemisia tabaci in nectaried and nectariless cotton. Pest Management Science, 59, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Torres, J. B., Barros, E. M., Coelho, R. R., & Pimentel, R. M. M. (2010). Zoophytophagous pentatomids feeding on plants and implications for biological control. Arthropod-Plant Interactions, 4, 219–227.

    Article  Google Scholar 

  • Torres, J. B., Rodrigues, A. R. S., Barros, E. M., & Santos, D. S. (2015). Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal of Economic Entomology, 108, 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Ulhôa, J. L. R., Carvalho, G. A., Carvalho, C. F., & Souza, B. (2002). Ação de inseticidas recomendados para o controle do curuquerê-do-algodeiro para pupas e adultos de Chrysoperla externa (Hagen 1861) (Neuroptera: Chrysopidae). Ciêna Agrotecnol, 26, 1365–1372.

    Google Scholar 

  • USDA (2016) United States Department of Agriculture. Foreign Agriculture Service. Cotton: world markets and trade. Washington, USDA, 5 May 2016. Available from: https://apps.fas.usda.gov/psdonline/circular/cotton.pdf

  • Whitcomb WH, Bell K (1964) Predaceous insects spiders and mites of Arkansas cotton fields. Agriculture Experiment Station, Bulletin 690, University of Arkansas, Fayetteville.

  • Williams, L., & Price, L. (2004). A space efficient contact toxicity bioassay for minute Hymenoptera used to test the effects of novel and conventional insecticides on the egg parasitoids Anaphes iole and Trichogramma pretiosum. BioControl, 38, 163–185.

    Article  Google Scholar 

  • Wilson, L., Bauer, J. L. R., & Lally, D. A. (1998). Effect of early season insecticide use on predators and outbreaks of spider mites (Acari: Tetranychidae) in cotton. Bulletin of Entomological Research, 88, 477–488.

    Article  CAS  Google Scholar 

  • Wu, K. M., & Guo, Y. Y. (2005). The evolution of cotton pest management practices in China. Annual Review of Entomology, 50, 31–52.

    Article  PubMed  CAS  Google Scholar 

  • Yu SJ (2014) The Toxicology and Biochemistry of Insecticides, Second Edition, CRC Press: Boca Raton.

Download references

Acknowledgments

The authors acknowledge the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Proc. 301739/2016-1” and the “Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), APQ-0168-5.01/15” for their financial support and grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Braz Torres.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Human Rights

no human subjects were involved in these experiments, and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, E.M., da Silva-Torres, C.S.A., Torres, J.B. et al. Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica 46, 391–404 (2018). https://doi.org/10.1007/s12600-018-0672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-018-0672-8

Keywords

Navigation