, Volume 46, Issue 2, pp 233–245 | Cite as

Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae)

  • Ana Murcia-Meseguer
  • Thiago J. S. Alves
  • Flor Budia
  • Antonio Ortiz
  • Pilar Medina


We evaluated the chemical composition of thirteen commercially available plant essential oils and their insecticidal activity against the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Gas chromatography-mass spectrometry was used to characterize the chemical components of the essential oils. A total of 113 compounds were identified, with terpenes (>80%) and aromatic compounds as primary constituents. The toxicity of each pure essential oil was tested separately on third instar larvae and adult beet armyworms by topical application of 0.5 μl oil/ insect. All plant essential oils were found to be harmful to S. exigua, with third instar larvae showing significantly more susceptibility than adults. Essential oils of Cinnamomum zeylanicum and Juniperus virginiana showed the highest toxicity (mortality above 90%) to larvae, while C. zeylanicum and Pogostemon cablin oils were the most harmful compounds (95% mortality) to adults. Cymbopogon winterianus oil caused delayed mortality (similar to the effects of insect growth regulators) as well as malformations in pupae. C. winterianus, Ocimum basilicum and Rosmarinus officinalis oils significantly reduced fecundity, whereas no significant effects were observed on fertility.


Beet armyworm Chemical identification Biopesticides Terpenes Aromatic compounds 



This study was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness (project AGL3013-47603-C2-1-R to E. Viñuela and P. Medina). The authors thank CAPES for PDSE scholarship (BEX 7003/15-03) awarded to Thiago J.S. Alves and the help provided by Sergio Estébanez García in the experimental assay and his contributions and suggestions in the current work.

Compliance with Ethical Standards

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. Ahmad, M., & Arif, M. I. (2010). Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Crop Prot, 29, 1428–1433.CrossRefGoogle Scholar
  2. Alburquerque, B. D., Lima, J. K., Souza, F. H., Silva, I. M., Santos, A. A., Araújo, A. P., Blank, A. F., Lima, R. N., Alves, P. B., & Bacci, L. (2013). Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ants species. Acta Trop, 127(3), 181–186.CrossRefGoogle Scholar
  3. Alves, T. J. S., Cruz, G. S., Wanderley-Teixeira, V., Teixeira, A. A. C., Oliveira, J. V., Correia, A. A., & Cunha, F. M. (2014). Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotech Histochem, 89(4), 245–255.CrossRefPubMedGoogle Scholar
  4. Athanassiou, C.G., Kavallieratos, N.G., Evergetis, E., Katsoula, A., & Haroutounian, S.A., (2012). Insecticidal efficacy of silica gel with Juniperus oxycedrus ssp. Oxycedrus Pinales: Cupressaceae) essential oil against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J Econ Entomol, 106(4), 1902–1910.Google Scholar
  5. Athanassiou, C. G., Rani, P. U., & Kavallieratos, N. G. (2014). The use of plant extracts for stored product protection. In D. Singh (Ed.), Advances in plant biopesticides (pp. 347–359). India: Springer.Google Scholar
  6. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2007). Biological effects of essential oils-A review. Food Chem Toxicol, 46, 446–475.CrossRefPubMedGoogle Scholar
  7. Baskaran, J., Arshid, G., Elumalai, K., & Krishnappa, K. (2012). Selected plants essential oils against ovicidal activity of armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Int J Adv Res, 1(1), 18–21.Google Scholar
  8. Bengochea, P., Budia, F., Viñuela, E., & Medina, P. (2014). Are kaolin and copper treatments safe to the olive fruit fly Psyttalia concolor? Journal of Pest Science, 87(2), 351–359.Google Scholar
  9. Caballero, P., Murillo, R., Muñoz, D., & Williams, T. (2009). El nucleopoliedrovirus de Spodoptera exigua (Lepidoptera: Noctuidae) como bioplaguicida: análisis de avances recientes en España. Revista Colombiana Entomología, 35(2), 105–115.Google Scholar
  10. Che, W., Shi, T., Wu, Y., & Yang, Y. (2012). Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol, 106(4), 1855–1862.CrossRefGoogle Scholar
  11. Cheng, S. S., Liu, J. Y., Huang, C. G., Hsui Chen, W. J., & Chang, S. T. (2009). Insecticidal activities of leaf essential oil from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol, 100, 457–464.CrossRefPubMedGoogle Scholar
  12. Cruz, G.S., Teixeira, V.W., De Oliveira, J.V., Teixeira, A.A.C., Araújo, A.C., Alves, T.J.S., Da Cunha, F.M, & Breda, M.O., (2015). Histological and histochemical changes by clove essential oil upon the gonads of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Int J Morphol, 33 (4), 1393–1400.Google Scholar
  13. Dimetry, N. Z. (2014). Different plant families as bioresource for pesticides. In D. Singh (Ed.), Advances in plant biopesticides (pp. 1–17). India: Springer.Google Scholar
  14. Enan, E. (2001). Insectidal activity of esential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology, Part C, 130, 325–337.Google Scholar
  15. Escobar-Valencia, C., Hernández-Carlos, B., Zayas-Pérez, M.T., Aragón-García, A., Pérez-González, L.E., Hernández-Molina, R., & López-Olguín, J.F., (2007). Actividad antialimentaria de extractos vegetales en el "gusano soldado" Spodoptera exigua (Lepidoptera: Noctuidae). Agricultura Sostenible Vol. 1: Alternativas contra plagas (pp.11–18).Google Scholar
  16. Garzón, A., Medina, P., Amor, F., Viñuela, E., & Budia, F. (2015). Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coocinellidae). Chemosphere, 132, 87–93.CrossRefPubMedGoogle Scholar
  17. Gillij, Y. G., Gleiser, R. M., & Zygadlo, J. A. (2008). Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol, 99, 2507–2515.CrossRefPubMedGoogle Scholar
  18. Gusmão, N. M. S., Oliveira, J. V., Navarro, D. M., Dutra, K. A., da Silva, W. A., & Wanderley, M. J. A. (2013). Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. Essential oils in the management of Callosobruchus maculatus (Fabr.) (Coleoptera: Chrysomelidae, Bruchinae). J Stored Prod Res, 54, 41–47.CrossRefGoogle Scholar
  19. Hummelbrunner, L. A., & Isman, M. B. (2001). Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep. Noctuidae). J Agric Food Chem, 49, 715–720.CrossRefPubMedGoogle Scholar
  20. Islam, R., Khan, R. I., Al-Raeza, S. M., Jeong, Y. T., Song, C. H., & Khalequzzman, M. (2009). Chemical composition and insecticidal properties of Cinnamomum aromaticum (Nees) essential oil against the stored product beetle Callosobruchus maculatus (F.) J Sci Food Agric, 89, 1241–1246.CrossRefGoogle Scholar
  21. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol, 51, 45–66.CrossRefPubMedGoogle Scholar
  22. Isman, M. B. (2009). Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev, 10(2), 197–204.CrossRefGoogle Scholar
  23. Isman, M. B., & Grieneisen, M. L. (2013). Botanical insecticide research: many publications, limited useful data. Trends Plant Sci, 19(3), 140–145.CrossRefPubMedGoogle Scholar
  24. Isman, M. B., & Machial, C. M. (2006). Pesticides based on plant essential oils: from traditional practice to commercialization. Advances in Phytomedicine, 3, 29–44.CrossRefGoogle Scholar
  25. Isman, M. B., & Tak, J. (2017). Inhibition of acetylcholinesterase by essential oils and monoterpenoids: A Relevant mode of action for insecticidal essential oils? Biopesticides International, 13(2), 71–78.Google Scholar
  26. Isman, M. B., Wan, A. J., & Passreiter, C. M. (2001). Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia, 72, 65–68.CrossRefPubMedGoogle Scholar
  27. Karr, L. L., & Coats, J. R. (1988). Insecticidal properties of d- limonene. J Pestic Sci, 13, 2287–2290.CrossRefGoogle Scholar
  28. Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., & Shaaya, E. (2002). Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci, 58, 1101–1106.CrossRefPubMedGoogle Scholar
  29. Koul, O., Walia, S., & Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides International, 4(1), 63–84.Google Scholar
  30. Kumar, P., Mishra, S., Malik, A., & Satya, S. (2011). Insecticidal properties of Mentha species: A review. Ind Crop Prod, 34, 802–817.CrossRefGoogle Scholar
  31. Lai, T., Li, J., & Su, J. (2011). Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pestic Biochem Physiol, 101(3), 198–205.CrossRefGoogle Scholar
  32. Lasa, R., Ruiz-Portero, C., Alcázar, M. D., Belda, J. E., Caballero, P., & Williams, T. (2007). Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol Control, 40, 89–96.CrossRefGoogle Scholar
  33. López, M. D., & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crop Prod, 31, 284–288.CrossRefGoogle Scholar
  34. Machial, C. M., Shikano, I., Smirle, M., Bradbury, R., & Isman, M. B. (2010). Evaluation of the toxicity of 17 essential oils against Choristoneura rosaceana (Lepidoptera:Tortricidae) and Trichoplusia ni (Lepidoptera: Noctuidae). Pest Manag Sci, 66, 1116–1121.CrossRefPubMedGoogle Scholar
  35. MAPAMA, Ministry of Agriculture, Food and Environment. (2017). Annual Survey Directory Accessed 27.04.2017.
  36. MAPAMA, Ministry of Agriculture, Food and Environment. (2018). European community list of active substance included, excluded and under evaluation. Accessed 21.03.2018.
  37. Medina, P., Budia, F., Estal, P., & Viñuela, E. (2004). Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: toxicity and ultrastructural approach. J Econ Entomol, 97(1), 43–50.CrossRefPubMedGoogle Scholar
  38. Mills, C., Cleary, B. J., Gilmer, J. F., & Walsh, J. J. (2004). Inhibition of acetylcholinesterase by Tea Tree oil. J Pharm Pharmacol, 56, 375–379.CrossRefPubMedGoogle Scholar
  39. Miresmailli, S., Bradbury, R., & Isman, M. B. (2006). Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci, 62, 366–371.CrossRefPubMedGoogle Scholar
  40. Mondal, M., & Khalequzzaman, M. (2009). Ovicidal activity of essential oils against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Bio –Science, 17, 57–62.Google Scholar
  41. Moulton, J. K., Pepper, D. A., & Dennehy, T. J. (2000). Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Manag Sci, 56(1), 842–848.CrossRefGoogle Scholar
  42. Ngoh, P. H., Lionel, E. W. C., Fung, P. Y., Kini, M. R., & Ho, S. H. (1998). Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.) Pest Manag Sci, 54, 261–268.CrossRefGoogle Scholar
  43. Niculau, E. S., Alves, P. B., Nogeuira, P. C., Moraes, V. R., Matos, A. P., Bernardo, A. R., Volante, A. C., Fernandes, J. B., da Silva, M. F. G. F., Corrêa, A. G., Blank, A. F., Silva, A. C., & Ribeiro, L. P. (2013). Insecticidal activity of essential oils of Pelargonium graveolens l’Herit and Lippia alba (Mill.) N.E. Brown against Spodoptera frugiperda (J.E.Smith). Quim Nova, 36(9), 1391–1394.CrossRefGoogle Scholar
  44. Papachristos, D. P., Kimbaris, A. C., Papadopoulos, N. T., & Polissiou, M. G. (2009). Toxicity of citrus essential oils against Ceratitis capitata (Diptera: Tephritidae) larvae. Ann Appl Biol, 155, 381–389.CrossRefGoogle Scholar
  45. Pavela, R. (2005). Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia, 76, 691–696.CrossRefPubMedGoogle Scholar
  46. Pavela, R. (2014). Limitations of plants biopesticides. In D. Singh (Ed.), Advances in plant biopesticides (pp. 347–359). India: Springer.CrossRefGoogle Scholar
  47. Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 311, 808–811.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Poitout, S., & Bues, R. (1974). Élevage des chenilles de vinghuit espéces de lépidoptères Noctuidae et de deux espéces d'Arctiidae sur milieu artificiei simple. Particularités de l'élevage selon les espéces Annales de Ecologie Animale, 6, 431–441.Google Scholar
  49. Rossi, Y. E., & Palacios, S. M. (2015). Insecticidal toxicity of Eucalyptus cinerea essential oil and 1,8-cineole against Musca domestica and possible uses according to the metabolic responses of files. Ind Crop Prod, 63, 133–137.CrossRefGoogle Scholar
  50. Sabine, J. R. (1975). Exposure to an environment containing the aromatic red cedar, Juniperus virginiana: Procarcinogenic, enzyme-inducing and insecticidal effects. Toxicology, 5, 221–235.CrossRefPubMedGoogle Scholar
  51. Sharma, R. N., & Saxena, K. N. (1974). Orientation and developmental inhibition in the housefly by certain terpenoids. J Med Entomol, 11, 617–621.PubMedGoogle Scholar
  52. StatPoint Technologies (2013). Statgraphic Centurion XVI (v. 16.2.04) software version 16.2. 04. Virginia: StatPoint Technologies Inc.Google Scholar
  53. Tak, J., & Isman, M. B. (2015). Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci Rep, 5, 12690.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van der Blom, J., Robledo, A., Torres, S., Sánchez, J. A., & Contreras, M. (2008). Control biológico de plagas en Almería: Revolución verde después de dos décadas. Phytoma, 198, 42–48.Google Scholar
  55. Zhou, C., Liu, Y., Yu, W., Deng, Z., Gao, M., Liu, F., & Mu, W. (2011). Resistance of Spodoptera exigua to ten insecticides in Shandong, China. Phytoparasitica, 39, 315–324.CrossRefGoogle Scholar
  56. Zhu, B. C. R., Henderson, G., Yu, Y., & Laine, R. A. (2003). Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Agric Food Chem, 51, 4585–4588.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ana Murcia-Meseguer
    • 1
  • Thiago J. S. Alves
    • 2
  • Flor Budia
    • 1
  • Antonio Ortiz
    • 3
  • Pilar Medina
    • 1
  1. 1.Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Agronomia. Setor de EntomologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  3. 3.Departamento de Química Orgánica e Inorgánica, EPSLUniversidad de JaénLinaresSpain

Personalised recommendations