Abstract
Global papaya production is severely affected by papaya ringspot disease caused by Papaya ringspot virus (PRSV). Management of this potyvirus is challenging, due to 1) its non-persistent transmission by numerous aphid species and 2) the diversity of PRSV strains that exists within a country or between different geographical regions. Papaya cultivars with transgenic resistance have reduced the impact of the disease. There are no effective alternatives to transgenic resistance available in areas where disease pressure is high. In Hawaii, transgenic papayas such as “SunUp” and “Rainbow” have remained resistant to PRSV more than two decades saving the commercial papaya industry. Following the success in Hawaii, researchers from other countries have focused on developing PRSV-resistant transgenic papaya. These transgenic cultivars often demonstrated an initial transitory resistance that was ultimately overcome by the virus. For other cases, resistance was inconsistent. That is, some transgenic lines were resistant while others were not. Transgenic cultivars are now losing PRSV-resistance for various reasons in China and Taiwan. In this review, we present an update on work with transgenic papaya with resistance to PRSV. The focus is on factors affecting transgenic resistance in papaya and our attempt to explain why the Hawaiian scenario of complete and durable resistance has not been replicated in other regions. The utilization of more recent technologies to the development of virus resistance in papaya is also discussed.
Similar content being viewed by others
References
Adams, M. J., Antoniw, J. F., & Beaudoin, F. (2005). Review: overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Molecular Plant Pathology, 6, 471–487. https://doi.org/10.1111/j.1364-3703.2005.00296.x.
Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67(4), 657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003.
Alabi, O. J., Al Rwahnih, M., Brown, J. K., Idris, A. M., Gregg, L., Kmieciak, E., Sétamou, M., & Jifon, J. L. (2016). First report of papaya (Carica papaya) naturally infected with the introduced Tomato yellow leaf curl virus-Israel. Plant Disease, 100(9), 1959. https://doi.org/10.1094/PDIS-04-16-0469-PDN.
Ali, Z., Abul-faraj, A., Idris, A., Ali, S., Tashkandi, M., & Mahfouz, M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biology, 16, 1–11. https://doi.org/10.1186/s13059-015-0799-6.
Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallor, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, 95(22), 13079–13084. https://doi.org/10.1073/pnas.95.22.13079.
Azad, M. A. K., Amin, L., & Sidik, N. M. (2014). Gene technology for Papaya ringspot virus disease management. The Scientific World Journal. https://doi.org/10.1155/2014/768038.
Badillo, V. (1993). Caricaceae, segundo esquema. Revista de la Facultad de Agronornia (Maracay), 43, 111.
Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M., & Voytas, D. F. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nature Plants, 1, 15145. https://doi.org/10.1038/nplants.2015.145.
Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., & Yeh, S. D. (2003). Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology, 93, 112–120. https://doi.org/10.1094/PHYTO.2003.93.1.112.
Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., Liou, P. C., Hsiao, C. H., Lin, C. Y., & Yeh, S. D. (2004). Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Disease, 85, 594–599.
Bau, H. J., Kung, Y. J., Raja, J., Chan, S. J., Chen, K. C., Chen, Y. K., Wu, H. W., & Yeh, S. D. (2008). Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus. Phytopathology, 98, 848–856. https://doi.org/10.1094/PHYTO-98-7-0848.
Baulcombe, D. C. (1996). RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Molecular Biology, 32, 79–88.
Baulcombe, D., English, J., Mueller, E., & Davenport, G. (1996). Gene silencing and virus resistance in transgenic plants. In G. W. Grierson, G. W. Lycett, & G. A. Tucker (Eds.), Mechanisms and applications of gene silencing (pp. 127–138). Nottingham: Nottingham University Press.
Beachy, R. N. (1997). Mechanisms and applications of pathogen-derived resistance in transgenic plants. Current Opinion Biotechnoogy, 8, 215–220.
Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, E. A., & Aragão, F. J. L. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant Microbe Interaction., 20(6), 717–726.
Calvert, L. A., & Ghabrial, S. A. (1983). Enhancement by soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean. Phytopathology, 73, 992–997.
Carvalho, F. D., Gheysen, G., Kushnir, S. M., Inze, D., & Castresana, C. (1992). Suppression of beta-1,3-glucanase transgene expression in homozygous plants. European Molecular Biology Organization Journal, 11, 2595–2602.
Chan Jr., H. T., & Tang, C.-S. (1979). The chemistry and biochemistry of papaya. In G. E. Inglett & G. Charolambous (Eds.), Tropical foods: Chemistry and nutrition (Vol. 1, pp. 33–53). New York: Academic press.
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., & Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140–1153. https://doi.org/10.1111/mpp.12375.
Chaves-Bedoya, G., & Ortiz-Rojas, L. Y. (2015). Genetic variability of papaya ringspot virus isolates in Norte de Santander - Colombia. Agronomia Colombiana, 33(2), 184–193.
Chen, G., Ye, C., Huang, J., Yu, M., & Li, B. (2001). Cloning of the Papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Reports, 20(3), 272–277.
Cheng, Y. H., Yang, J. S., & Yeh, S. D. (1996). Efficient transformation of papaya by coat protein gene of Papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Report, 16, 127–132. https://doi.org/10.1007/BF01890852.
Chiang, C. H., Wang, J. J., Jan, F. J., Yeh, S. D., & Gonsalves, D. (2001). Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. Journal of General Virology, 82, 2827–2836. https://doi.org/10.1099/0022-1317-82-11-2827.
Chung, B. Y. W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 105, 5897–5902.
Cruz, F. C. S., Tanada, J. M., Elvira, P. R. V., Dolores, L. M., Magdalita, P. M., Hautea, D. M., & Hautea, R. A. (2009). Detection of mixed virus infection with Papaya ringspot virus (PRSV) in papaya (Carica papaya L.) grown in Luzon, Philippines. Philippine Journal of Crop Science, 34, 62–74.
Daltro, C. B., Pereira, Á. J., Cascardo, R. S., Alfenas-Zerbini, P., Bezerra-Junior, J. E. A., Lima, J. A. A., Zerbini, F. M., & Andrade, E. C. (2012). Genetic variability of papaya lethal yellowing virus isolates from Ceará and Rio Grande do Norte states, Brazil. Tropical Plant Pathology, 37(1), 37–43.
Davis, M. J., & Ying, Z. (2004). Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Disease, 88, 352–358. https://doi.org/10.1094/PDIS.2004.88.4.352.
Dey, K. K., Hong, L., Borth, W. B., Melzer, M. J., & Hu, J. S. (2012). A highly sensitive single-tube nested PCR assay for the detection of Pineapple mealybug wilt associated virus-2 (PMWaV-2). Journal of Virological Methods, 183, 215–218.
Dıaz-Pendon, J. A., & Ding, S. W. (2008). Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annual Review of Phytopathology, 46, 303–326. https://doi.org/10.1146/annurev.phyto.46.081407.104746.
Ding, S. W., & Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell, 130, 413–426. https://doi.org/10.1016/j.cell.2007.07.039.
Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant Journal., 32, 927–934.
Fagard, M., & Vaucheret, H. (2000). (Trans) gene silencing in plants: how many mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.
FAOSTAT. (2014). Production. http://faostat.fao.org/site/339/default.aspx. Accessed 19 Dec 2014.
Fermin, G., & Gonsalves, D. (2001). Towards the development of short synthetic genes for multiple virus resistance. Phytopathology, 91, 28.
Fermin, G., & Gonsalves, D. (2004). Control of viral diseases of papaya: Native, chimeric and synthetic transgenes to engineer resistance against Papaya ringspot virus. In G. Loebenstein & G. Thottappilly (Eds.), Virus and virus-like diseases of major crops in developing coutries (pp. 497–518). The Netherlands: Kluwer Academic Press Publishers.
Fermin, G. A., & Randle, M. (2015). Papaya ringspot. In P. Tennant & G. A. Fermin (Eds.), Virus diseases of tropical and subtropical crops. London: Cabi.
Fermin, G. A., Inglesses, V., Garbozo, C., Rangel, S., Dagert, M., & Gonsalves, D. (2004). Engineered resistance against PRSV in Venezuelan transgenic papayas. Plant Disease, 88, 516–522.
Fermin, G. A., Castro, L. T., & Tennant, P. F. (2010). CP-transgenic and non-transgenic approaches for the control of papaya ringspot: current situation and challenges. Transgenic Plant Journal, 4, 1–15.
Fermin-Munoz, G. A. (2002). Use, application, and technology transfer of native and synthetic genes for engineering single and multiple transgenic viral resistances (p. 293). Ithaca: Department of Plant Pathology, Cornell University.
Ferreira, S., Mau, R., Manshardt, R., Pitz, K., & Gonsalves, D. (1992). Field evaluation of papaya ringspot virus cross protection. In Proc. 28th Annual Hawaii Papaya Industry Association Conference (pp. 29–30).
Ferreira, S. A., Pitz, K. Y., Manshardt, R., Fitch, M., & Gonsalves, D. (2002). Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease, 86(2), 101–105.
Fitch, M. M. M. (2010). Papaya ringspot virus (PRSV) resistance in papaya: update on progress worldwide. Transgenic Plant Journal, 4, 16–28.
Fitch, M. M., & Manshardt, R. M. (1990). Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.) Plant Cell Reports, 9, 320–324. https://doi.org/10.1007/BF00232860.
Fitch, M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., & Sanford, J. C. (1992). Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 10, 1466–1472. https://doi.org/10.1038/nbt1192-1466.
Fuchs, M., & Gonsalves, D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annual Review of Phytopathology, 45, 173–202. https://doi.org/10.1146/annurev.phyto.45.062806.094434.
Gómez, P., Rodríguez-Hernández, A. M., Moury, B., & Aranda, M. A. (2009). Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. European Journal of Plant Pathology, 125, 1–22.
Gonsalves, D. (1998). Control of papaya ringspot virus in papaya: a case study. Annual Review of Phytopathology, 36, 415–437. https://doi.org/10.1146/annurev.phyto.36.1.415.
Gonsalves, D. (2002). Coat protein transgenic papaya: “acquired” immunity for controlling Papaya ringspot virus. Current Topics in Microbiology and Immunology, 266, 73–83. https://doi.org/10.1007/BF00232860.
Gonsalves, D. (2004). Tansgenic papaya in Hawaii and beyond. AgBioforum, 7(1&2), 36–40.
Gonsalves, D., Gonsalves, C., Ferreira, S., Pitz, K., Fitch, M., Manshardt, R., & Slightom, J. (2004). Transgenic virus resistant papaya: From hope to reality for controlling papaya ringspot virus in Hawaii. APSnetFeatures, http://www.apsnet.org/online/feature/ringspot/. https://doi.org/10.1094/APSnetFeature-2004-0704.
Green, J. C., & Hu, S. J. (2017). Editing plants for virus resistance using CRISPR-Cas. Acta Virologica, 61, 138–142. https://doi.org/10.4149/av_2017_02_02.
Guo, J., Yang, L., Liu, X., Guan, X., Jiang, L., & Zhang, D. (2009). Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya. Journal of Agricultural and Food Chemistry, 57, 7205–7212. https://doi.org/10.1021/jf901198x.
Hamim, I., Alam, M. Z., Ali, M. A., & Ashrafuzzaman, M. (2014). Incidence of post-harvest fungal diseases of ripe papaya in Mymensingh. Journal of Bangladesh Agricultural University, 12(1), 25–28.
Hamim, I., Borth, W., Melzer, M. J., Green, J. C., & Hu, J. (2017). Detection of Papaya ringspot virus using an ultra-sensitive single-tube nested PCR. 29 th annual CTAHR and COE student research symposium. University of Hawai‘i at Mānoa, USA
Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11, 777–788. https://doi.org/10.1038/ nrmicro3117.
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPRCas9 for genome engineering. Cell, 157, 1262–1278.
Jensen, D. D. (1949). Papaya virus diseases with special reference to papaya ringspot. Phytopathology, 39, 191–211.
Ji, X., Zhang, H., Zhang, Y., Wang, Y., & Gao, C. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 1, 15144. https://doi.org/10.1038/nplants.2015.144.
Jia, R., Zhao, H., Huang, J., Kong, H., Zhang, Y., Guo, J., Huang, Q., Guo, Y., Wei, Q., Zuo, J., Zhu, Y. J., Peng, M., & Guo, A. (2017). Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Scientific Reports, 7(12636). https://doi.org/10.1038/s41598-017-13049-0.
Jiang, J., & Laliberté, J. F. (2011). The genome-linked protein VPg of plant viruses-a protein with many partners. Current Opinion Virology., 1, 347–354.
Kalantidis, K., Psaradakis, S., Tabler, M., & Tsagris, M. (2002). The occurrence of CMV specific short RNAs in transgenic tobacco expressing virus-derived doubles tranded RNA is indicative of resistance to the virus. Molecular Plant Microbe Interactions, 15, 826–833. https://doi.org/10.1094/MPMI.2002.15.8.826.
Karyeija, R. F., Kreuze, J. F., Gibson, R. W., & Valkonen, J. P. (2000). Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology, 269(1), 26–36.
Kasschau, K. D., & Carrington, J. C. (1998). A Counter defensive strategy of plant viruses: suppression of post transcriptional gene silencing. Cell, 95, 461–470. https://doi.org/10.1016/S0092-8674(00)81614-1.
Kos, M., Loon, J. J. V., Dicke, M., & Vet, L. E. M. (2009). Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 27(11), 621–627.
Kung, Y. J., Bau, H. J., Wu, Y. L., Huang, C. H., Chen, T. M., & Yeh, S. D. (2009). Phytopathology, 99, 1312–1320. https://doi.org/10.1094/PHYTO-99-11-1312.
Kung, Y., You, B., Raja, J. A. J., Chen, K., Huang, C., Bau, H., Yang, C., Huang, C., Chang, C., & Yeh, S. (2015). Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Science Reports, 5, 9804. https://doi.org/10.1038/srep09804.
Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., & Liu, Y. P. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO Journal, 25, 2768–2780.
Lellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss of susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12, 1046–1051.
Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberté, J. F. (2000). Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. Journal of Virology, 74, 7730–7737.
Lines, R. E., Persley, D., Dale, J. L., Drew, R., & Bateson, M. F. (2002). Genetically engineered immunity to papaya ringspot virus in Australian papaya cultivars. Molecular Breeding, 10, 119–129. https://doi.org/10.1023/A:1020381110181.
Ling, K., Namba, S., Gonsalves, C., Slightom, J. L., & Gonsalves, D. (1991). Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the Papaya ringspot virus coat protein gene. Biotechnology, 9, 752–758.
Lius, S., Manshardt, R. M., Fitch, M. M., Slightom, J. L., Sanford, J. C., & Gonsalves, D. (1997). Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Molecular Breeding, 3, 161–168.
Lu, Y. W., Shen, W. T., Zhou, P., Tang, Q. J., Niu, Y. M., Peng, M., & Xiong, Z. (2008). Complete genomic sequence of a papaya ringspot virus isolate from Hainan Island, China. Archives of Virology, 153, 991–993. https://doi.org/10.1007/s00705-008-0056-3.
Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B., & Bowman, L. H. (2002). A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proceedings of the National Academic of Sciences of the United States of America, 99, 15228–15233. https://doi.org/10.1073/pnas.232434999.
Mangrauthia, S. K., Parameswari, B., Jain, R. K., & Praveen, S. (2008). Role of genetic recombination in the molecular architecture of papaya ringspot virus. Biochemical Genetics, 46(11–12), 835–846. https://doi.org/10.1007/s10528-008-9198-y.
Mangrauthia, S. K., Shakya, V. P. S., Jain, R. K., & Praveen, S. (2009). Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes, 38, 429–434. https://doi.org/10.1007/s11262-009-0336-3.
Mangrauthia, S. K., Priyanka, S. E., & Praveen, E. S. (2010). Genomics of helper component proteinase reveals effective strategy for Papaya Ringspot Virus resistance. Molecular Biotechnology, 44, 22–29. https://doi.org/10.1007/s12033-009-9205-5.
Manshardt, R. M. (1999). ‘UH Rainbow’ papaya a high-quality hybrid with genetically engineered disease resistance. University of Hawaii College of Tropical Agriculture and Human Resources(CTAHR), New Plants for Hawaii (NPH)-1, revised. Available at: http://www.ctahr.hawaii.edu/ctahr200l/P]O/FreePubs/FreePubsO7.asp#NewPlantsForHawaii.
Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., et al. (1999). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology, 259, 190–199. https://doi.org/10.1006/viro.1999.9766
Matzke, M. A., & Matzke, A. J. M. (1998). Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cellular and Molecular Life Sciences, 54, 94–103.
Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., & Caranta, C. (2011). Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against Potyviruses in Tomato. PLoS One, 6, e29595.
Mendoza, T. E. M., Laurena, A., & Botella, J. R. (2008). Recent advances in the development of transgenic papaya technology. Biotechnology Annual Review, 14, 423–462. https://doi.org/10.1016/S1387-2656(08)00019-7.
Merai, Z., Kerenyi, Z., Kertesz, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-stranded RNA binding may be a general plant viral strategy to suppress RNA silencing. Journal of Virology, 80, 5747–5756.
Moffat, A. S. (1999). Geminiviruses emerge as serious crop threat. Science, 286, 1835.
Murphy, J. F., & Bowen, K. L. (2006). Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology, 96, 240–247.
Namba, R., & Higa, S. Y. (1981). Papaya mosaic transmission as affected by the duration of the acquisition probe of the green peach aphid – Myzus persicae (Sulzer). Proceeding of Hawaiian Entomology Society, 23, 431–443.
Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M. P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C., & LeGall, O. (2003). The eukaryotic translation initiation factor 4E controls Lettuce susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132, 1272–1282.
Noa-Carrazana, J., González-de-León, D., Ruiz-Castro, B., Piñero, D., & Silva-Rosales, L. (2006). Distribution of Papaya ringspot virus and Papaya mosaic virus in papaya plants (Carica papaya) in Mexico. Plant Disease, 90, 1004–1011. https://doi.org/10.1094/PD-90-1004.
Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., & Gibbs, A. J. (2007). Pattern of recombination in Turnip mosaic virus genomic sequences indicates hotspots of recombination. Journal of General Virology., 88, 298–315.
Paolla, M. V. A., Tathiana, F. S. A., Anuar, M. Á., Daisy, P. B., Raúl, T. T., José, A. V., Antonio, A. R. F., & Patricia, M. B. F. (2015). A current overview of the Papaya meleira virus, an unusual plant virus. Virus, 7, 1853–1870. https://doi.org/10.3390/v7041853.
Phironrit, N., Chowpongpang, S., Warin, N., Bhunchoth, A., & Attathom, S. (2005). Small scale field testing of PRSV resistance in transgenic papaya line KN116/5. In I International Symposium on Papaya 740 (pp. 169–176).
Powell-Abel, P., Nelson, R. S., De, B., Hoffmann, N., & Rogers, S. G. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232, 738–743. https://doi.org/10.1126/science.232.4751.738.
Prasad, S. M., & Sarkar, D. P. (1989). Some ecological studies on Papaya ringspot virus in Ranchi. Indian Journal Virology, 5, 118–122.
Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., & Vance, V. B. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 9, 859–868. https://doi.org/10.1105/tpc.9.6.859.
Purcifull, D., Edwardson, J., Hiebert, F., & Gonsalves, D. (1984). Papaya ringspot virus. CM1/AAB Descriptions of Plant Viruses. No. 292. (No. 64 Revised, July 1984), pp. 8.
Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17, 1276–1288. https://doi.org/10.1111/mpp.12417.
Quemada, H. L., Hostis, B., & Gonsalves, D. (1990). The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains w and p. Journal of General Virology, 71, 203–210.
Rodríguez-Hernández, A. M., Gosalvez, B., Sempere, R. N., Burgos, L., Aranda, M. A., & Truniger, V. (2012). Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Molecular Plant Pathology., 13, 755–763.
Ruanjan, P., Kertbundit, S., & Juricek, M. (2007). Post-transcriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51, 517–520.
Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A., & Caranta, C. (2006). Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. Journal of General Virology, 87, 2089–2098.
Sakuanrungsirikul, S., Sarindu, N., Prasartsee, V., Chaikiatiyos, S., Siriyan, R., Sriwatanakul, M., Lekananon, P., Kitprasert, C., Boonsong, P., Kosiyachinda, P., Fermin, G., & Gonsalves, D. (2005). Update on the development of virus-resistant papaya: virus-resistant transgenic papaya forpeople in rural communities of Thailand. Food Nutrition Bulletin, 26, 422–426.
Sanfaçon, H. (2015). Plant translation factors and virus resistance. Virus, 7, 3392–3419.
Sanford, J. C., & Johnston, S. A. (1985). The concept of parasite-derived resistance - Deriving resistance genes from the parasite’s own genome. Journal of Theoretical Biology, 113, 395–405.
Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M., & Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Letter, 579, 1167–1171.
Schumann, U., Smith, N. A., Kazan, K., Michael, A. M., & Wang, M. B. (2013). Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum. Silence, 4, 3. http://www.silencejournal.com/content/4/1/3. https://doi.org/10.1186/1758-907X-4-3.
Souza, M. T., Nickel, O., & Gonsalves, D. (2005a). Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of papaya ringspot virus. Fitopatologia Brasileira, 30, 357–365.
Souza, J. M. T., Tennant, P. F., & Gonsalves, D. (2005b). Influence of coat protein transgene copy number on resistance in transgenic line 63–1 against papaya ringspot virus isolates. Hort- Science, 40, 2083–2087.
Stokstad, E. (2008). Papaya takes on ringspot virus and wins. Science, 320, 472. https://doi.org/10.1126/science.320.5875.472.
Sturrock, D. (1940). Tropical fruits for Southern Florida and Cuba and their uses. Jamaica Plain: The Arnold Arboretum of Harvard University.
Swain, S., & Powell, D. (2001). Papaya ringspot virus resistant papaya: a case study. Online. University of Guelph. Available at http://www.foodsafetynetwork.ca/gmo/papayarep.Htm.
Tennant, P. F., Gonsalves, C., Ling, K. S., Fitch, M. M., Manshardt, R., Slightom, L. J., & Gonsalves, D. (1994). Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology, 84(11), 1359–1366.
Tennant, P., Fermin, G., Fitch, M. M., Manshardt, R. M., Slightom, J. L., & Gonsalves, D. (2001). Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology, 107(6), 645–653. https://doi.org/10.1023/A:1017936226557.
Tennant, P. F., Ahmad, M. H., & Gonsalves, D. (2002). Transformation of Carica papaya L. with virus coat protein genes for studies on resistance to papaya ringspot virus from Jamaica. Tropical Agriculture (Trinidad), 79(2), 105–113.
Tennant, P., Ahmad, M. H., & Gonsalves, D. (2005). Field resistance of coat protein transgenic papaya to Papaya ringspot virus in Jamaica. Plant Disease, 89, 841–847 apsjournals.apsnet.org/doi/pdf/10.1094/PD-89-0841.
Titanji, V. P. K., Zofou, D., & Ngemeneya, M. N. (2008). The Antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian Folk Medicine. The African Journal of Traditional, Complementary and Alternative Medicines, 5(3), 302–321.
Tripathi, S., Bau, H. J., Chen, L. F., & Yeh, S. D. (2004). The ability of papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. European Journal of Plant Pathology, 110, 871–882. https://doi.org/10.1007/s10658-004-0607-8.
Tripathi, S., Suzuki, J. Y., Ferreira, S. A., & Gonsalves, D. (2008). Papaya ringspot virus - P: characteristics, pathogenicity, sequence variability and control. Molecular Plant Pathology, 9, 269–280. https://doi.org/10.1111/j.1364-3703.2008.00467.x.
USDA/ARS. (2001). USDA nutrient data base for standard reference. Release 13.Nutrient Data Laboratory Home Page [online]. United States Department of Agriculture/Agricultural Research Service, 1999 [cited February 7, 2001]. Available from http:www.nal.usda.gov/fnic/foodcomp. accessed 17 Mar 2006.
Valli, A., Lopez-Moya, J. J., & Garcia, J. A. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. The Journal of General Virology, 88, 1016–1028. https://doi.org/10.1099/vir.0.82402-0.
Velázqueza, K., Renovella, A., Comellasa, M., Serraa, P., Garcı’ab, M. L., Pinaa, J. A., Navarroa, L., Morenoa, P., & Guerria, J. (2010). Effect of temperature on RNA silencing of a negative stranded RNA plant virus: Citrus psorosis virus. Plant Pathology, 59, 982–990.
Ventura, J. A., Costa, H., Tatagiba, J. S., Andrade, J. S., & Martins, D. S. (2003). Meleira do mamoeiro: Etiologia, sintomas e epidemiologia. In D. S. Martins (Ed.), Papaya Brasil: Qualidade do mamão para o mercado interno (pp. 267–276). Vitória: Incaper.
Ventura, J. A., Costa, H., & da Silva Tatagiba, J. (2004). Papaya diseases and integrated control. In Diseases of fruits and vegetables (pp. 201–268). Berlin: Springer.
Villegas, V. N., Magdalita, P. M., Valencia, L. D. & Ocampo, T. D. (2001). Development of transgenic papaya resistance to ringspot virus. Country progress report at the Papaya Biotechnology Network of Southeast Asia held in Hanoi, Vietnam, 22–23 October 2001.
Wang, H. L. (1981). Aphid transmission of Papaya ringspot virus in Taiwan. Plant Protection Bulletin, 23, 229–233.
Wang, Y. N., Wu, B., Borth, W. B., Hamim, I., Green, J. C., Melzer, M. J., & Hu, J. S. (2017a). Molecular characterization and distribution of two strains of Dasheen mosaic virus on Taro in Hawaii. Plant Disease, 101(12), 1980–1989. https://doi.org/10.1094/PDIS-04-17-0516-RE.
Wang, Y. N., Borth, W. B., Green, J. C., Hamim, I., Cao, K., Hu, J. S., & Melzer, M. J. (2017b). Genome characterization and distribution of Taro bacilliform CH virus on taro in Hawaii, USA. European Journal of Plant Pathology, 387, 1–5.
Ye, C., & Li, H. (2010). 20 years of transgenic research in China for resistance Papaya ringspot virus. Transgenic Plant Journal Global Science Book, 4(1), 58–63.
Yeh, S. D., & Gonsalves, D. (1984). Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology, 74(9), 1086–1091.
Yeh, S. D., & Gonsalves, D. (1994). Practices and perspectives of control of papaya ringspot virus by cross protection. Advance Disease Vector Research, 10, 237–257.
Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., & Bau, H. J. (1992). Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. Journal of General Virology, 73(10), 2531–2541. https://doi.org/10.1099/0022-1317-73-10-2531.
Yeh, S., Bau, H., Cheng, Y., Yu, T., & Yang, J. (1998). Greenhouse and field evaluations of coat-protein transgenic papaya resistant to Papaya ringspot virus. Acta Horticulturae, (461, 461), 321–328. https://doi.org/10.17660/ActaHortic.1998.461.36
Yeh, S. D., Kung, Y. J., Bau, H. J., Yu, T. A., & Raja, J. A. J. (2010). Generation of a papaya hybrid variety with broad-spectrum transgenic resistance to papaya ringspot virus and papaya leaf-distortion mosaic virus. Transgenic Plant Journal., 4, 37–44.
Yeh, S. D., Raja, J., Kung, Y.-J., & Kositratana, W. (2014). Agbiotechnology: costs and benefits of genetically modified papaya. In N. K. Van Alfen (Ed.), Encyclopedia of agriculture and food systems. London: Elsevier. https://doi.org/10.1016/B978-0-444-52512-3.00252-7.
Zhang, Y., Yu, N., Huang, Q., Yin, G., Guo, A., Wang, X., Xiong, Z., & Liu, Z. (2014). Complete genome of Hainan papaya ringspot virus using small RNA deep sequencing. Virus Genes, 48, 502–508. https://doi.org/10.1007/s11262-014-1042-3.
Zhao, G., Yan, P., Shen, W., Tuo, D., Li, X., & Zhou, P. (2015). Complete genome sequence of papaya ringspot virus isolated from genetically modified papaya in Hainan island, China. Genome Announcements, 3(5), e01056–e01015. https://doi.org/10.1128/genomeA.01056-15.
Zhao, H., Jia, R. Z., Zhang, Y. L., Zhu, Y. J., Zeng, H. C., Kong, H., McCafferty, H., Guo, A. P., & Peng, M. (2016). Geographical and genetic divergence among Papaya ringspot virus populations within Hainan Province, China. Phytopathology, 106(8), 937–944. https://doi.org/10.1094/PHYTO-05-15-0111-R Epub 2016 May 27.
Zimmerman, T. W., Joseph, L., St. Brice, N., & Kowalski, J. A. (2005). Development and selection for homozygous transgenic papaya seedling. In I International Symposium on Papaya 740 (pp. 177–182).
Acknowledgements
We appreciate the editorial suggestions of Dr. Stanley Freeman and Dr. Slavica Matic. This work was supported by the United States Agency for International Development, as part of the Feed the Future initiative, under the CGIAR Fund, award number BFS-G-1100002, and the predecessor fund of the Food Security and Crisis Mitigation II grant, award number EEM-G-0004-00013. The research is also supported by the USDA National Institute of Food and Agriculture, Hatch HAW09025-H (1001478), and the USDA-Agricultural Research Service (58-5320-4-012).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflict of interest regarding the publication of this article in Phytoparasitica.
Rights and permissions
About this article
Cite this article
Hamim, I., Borth, W.B., Marquez, J. et al. Transgene-mediated resistance to Papaya ringspot virus: challenges and solutions. Phytoparasitica 46, 1–18 (2018). https://doi.org/10.1007/s12600-017-0636-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12600-017-0636-4