Braun, U. (1987). A monograph of the Erysiphales (powdery mildews). Beih Nova Hedwig, 89, 1–700.
Google Scholar
Braun, U., & Cook, R. T. A. (2012). Taxonomic manual of the Erysiphales (powdery mildews). The Netherlands: CBS-KNAW Fungal Biodiversity Centre.
Google Scholar
Braun, U., Shishkoff, N., & Takamatsu, S. (2001). Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s. Lat.) inferred from rDNA ITS sequences – A taxonomic interpretation. Schlechtendalia, 7, 45–52.
Google Scholar
Chen, R.-S., Chu, C., Cheng, C.-W., Chen, W.-Y., & Tsay, J.-G. (2008). Differentiation of two powdery mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. European Journal of Plant Pathology, 121, 1–8.
CAS
Article
Google Scholar
Cook, R. T. A., Denton, J. O., & Denton, G. (2015). Pathology of oak-wisteria powdery mildew. Fungal Biology, 119, 657–671.
CAS
Article
PubMed
Google Scholar
Cosme, B.-R., Josefina, L.-F., Raúl, A.-M., María Dolores, M.-R., José Armando, C.-F., José Benigno, V.-T., Fabiola Sary Mell, L.-S., & Raymundo Saúl, G.-E. (2012). Characterization of powdery mildew in cucumber plants under greenhouse conditions in the Culiacan Valley, Sinaloa, Mexico. African Journal of Agricultural Research, 7, 3237–3248.
Google Scholar
Hirata, T., Cunnington, J. H., Paksiri, U., Limkaisang, S., Shishkoff, N., Grigailiunaite, B., Sato, Y., & Takamatsu, S. (2000). Evolutionary analysis of subsection Magnicellulatae of Podosphaera section Sphaerotheca (Erysiphales) based on the rDNA internal transcribed spacer sequences with special reference to host plants. Canadian Journal of Botany, 78, 1521–1530.
CAS
Article
Google Scholar
Hosoya, K., Narisawa, K., Pitrat, M., & Ezura, H. (1999). Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breeding, 118, 259–262.
Article
Google Scholar
Huggenberger, F., Collins, M. A., & Skylakakis, G. (1984). Decreased sensitivity of Sphaerotheca fuliginea to fenarimol and other ergosterol-biosynthesis inhibitors. Crop Protection, 3, 137–149.
Article
Google Scholar
Kanto, T., Matsuura, K., Yamada, M., Usami, T., & Amemiya, Y. (2009). UV-B radiation for control of strawberry powdery mildew. Acta Horticulturae, 842, 359–362.
CAS
Article
Google Scholar
Kanto, T., Matsuura, K., Ogawa, T., Yamada, M., Ishiwata, M., Usami, T., & Amemiya, Y. (2014). A new UV-B lighting system controls powdery mildew of strawberry. Acta Horticulturae, 1049, 655–660.
Article
Google Scholar
Křístková, E., Lebeda, A., & Katovská, J. (2002). Response of Cucumis melo genotypes MR-1 and PI 124112 to Czech isolates of cucurbit powdery mildew. Acta Horticulturae, 588, 181–184.
Article
Google Scholar
Lebeda, A., & Sedláková, B. (2008). Fungicide resistance in populations of cucurbit powdery mildew. Journal of Plant Pathology, 90, S2.142.
Google Scholar
Matheron, M. E., & Porchas, M. (2007). Comparative performance and preservation of chemical management tools for powdery mildew on muskmelon. Acta Horticulturae, 731, 357–361.
CAS
Article
Google Scholar
Matsuda, Y., Ikeda, H., Moriura, N., Tanaka, N., Shimizu, K., Oichi, W., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006). A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology, 96, 967–974.
Article
PubMed
Google Scholar
McCreight, J. D. (2003). Genes for resistance to powdery mildew races 1 and 2U.S in melon PI 313970. Hortscience, 38, 591–594.
Google Scholar
McGrath, M. T., & Shishkoff, N. (2001). Resistance to triadimefon and benomyl: Dynamics and impact on managing cucurbit powdery mildew. Plant Disease, 85, 147–154.
CAS
Article
Google Scholar
McGrath, M. T., & Shishkoff, N. (2003). First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in the United States. Plant Disease, 87, 1007.
Article
Google Scholar
Mieslerová, B., & Lebeda, A. (2010). Influence of temperature and light conditions on germination, growth and conidiation of Oidium neolycopersici. Journal of Phytopathology, 158, 616–627.
Google Scholar
Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006a). An apparatus for collecting total conidia of Blumeria graminis f. sp. hordei from leaf colonies using electrostatic attraction. Plant Pathology, 55, 367–374.
Article
Google Scholar
Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Sameshima, T., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006b). Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation. Mycological Research, 110, 18–27.
Article
PubMed
Google Scholar
Mottier, P. (2009). LED for lighting applications. New Jersey: Wiley.
Book
Google Scholar
Munger, H. M. (1979). The influence of temperature on powdery mildew resistance in cucumber. Cucurbit Genetics Cooperative Report, 2, 9–10.
Google Scholar
Nonomura, T., Matsuda, Y., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2009). Collection of highly germinative pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycological Research, 113, 364–372.
Article
PubMed
Google Scholar
Nonomura, T., Matsuda, Y., Yamashita, S., Akahoshi, H., Takikawa, Y., Kakutani, K., & Toyoda, H. (2013). Natural woody plant, Mallotus japonicus, as an ecological partner to transfer different pathotypic conidia of Oidium neolycopersici to greenhouse tomatoes. Plant Protection Science, 49, S33–S40.
Article
Google Scholar
Oichi, W., Matsuda, Y., Sameshima, T., Nonomura, T., Kakutani, K., Nishimura, H., Kusakari, S., & Toyoda, H. (2004). Consecutive monitoring for conidiogenesis by Oidium neolycopersici on tomato leaves with a high-fidelity digital microscope. Journal of General Plant Pathology, 70, 329–332.
Article
Google Scholar
Oichi, W., Matsuda, Y., Nonomura, T., Toyoda, H., Xu, L., & Kusakari, S. (2006). Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Disease, 90, 915–919.
Article
Google Scholar
Reifschneider, F. J. B., Boiteux, L. S., & Occhiena, E. M. (1985). Powdery mildew on melon (Cucumis melo) caused by Sphaerotheca fuliginea in Brazil. Plant Disease, 69, 1069–1070.
Google Scholar
Romero, D., Pérez-García, A., Rivera, M. E., Cazorla, F. M., & de Vicente, A. (2004). Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied Microbiology and Biotechnology, 64, 263–269.
CAS
Article
PubMed
Google Scholar
Romero, D., de Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., Torés, J. A., & Pérez-García, A. (2007). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56, 976–986.
Article
Google Scholar
Sameshima, T., Kashimoto, K., Kida, K., Matsuda, Y., Nonomura, T., Kakutani, K., Nakata, K., Kusakari, S., & Toyoda, H. (2004). Cytological events in tomato leaves inoculated with conidia of Blumeria graminis f. Sp. hordei and Oidium neolycopersici KTP-01. Journal of General Plant Pathology, 70, 7–10.
Article
Google Scholar
Schuerger, A. C., & Brown, C. S. (1997). Spectral quality affects disease development of three pathogens on hydroponically grown plants. Hortscience, 32, 96–100.
CAS
PubMed
Google Scholar
Shibuya, T., Itagaki, K., Tojo, M., Endo, R., & Kitaya, Y. (2011). Fluorescent illumination with high red-to-far-red ratio improves resistance of cucumber seedlings to powdery mildew. Hortscience, 46, 429–431.
Google Scholar
Suthaparan, A., Stensvand, A., Torre, S., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010a). Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. Plant Disease, 94, 339–344.
Article
Google Scholar
Suthaparan, A., Torre, S., Stensvand, A., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010b). Specific light–emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Disease, 94, 1105–1110.
Article
Google Scholar
Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Mortensen, L. M., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2012a). Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Disease, 96, 1653–1660.
CAS
Article
Google Scholar
Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Telfer, K., Ruud, A., Cadle-Davidson, L., Mortensen, L., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2012b). Suppression of cucumber powdery mildew by UV-B is affected by background light quality. Phytopathology, 102, S4.116.
Google Scholar
Suthaparan, A., Torre, S., Mortensen, L. M., Gislerød, H. R., Solhaug, K. A., Stensvand, A., & Gadoury, D. M. (2012c). Interruption of the night period by UV-B suppresses powdery mildew of rose and cucumber. Acta Horticulturae, 956, 617–620.
Article
Google Scholar
Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Telfer, K. H., Ruud, A. K., Mortensen, L. M., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2014). Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant Disease, 98, 1349–1357.
CAS
Article
Google Scholar
Takikawa, Y., Kakutani, K., Nonomura, T., Matsuda, Y., & Toyoda, H. (2011). Conidia of Erysiphe trifoliorum attempt penetration twice during a two-step germination process on non-host barley leaves and an artificial hydrophobic surface. Mycoscience, 52, 204–209.
Article
Google Scholar
Takikawa, Y., Nonomura, T., Miyamoto, S., Okamoto, N., Murakami, T., Matsuda, Y., Kakutani, K., Kusakari, S., & Toyoda, H. (2015). Digital microscopic analysis of developmental process of conidiogenesis by powdery mildew pathogens isolated from melon leaves. Phytoparasitica, 43, 517–530.
CAS
Article
Google Scholar
Wang, H., Jiang, Y. P., Yu, H. J., Xia, X. J., Shi, K., Zhou, Y. H., & Yu, J. Q. (2010). Light quality affects incidence of powdery mildew, expression of defense-related genes and associated metabolism in cucumber plants. European Journal of Plant Pathology, 127, 125–135.
CAS
Article
Google Scholar
Willocquet, L., Colombet, D., Rougier, M., Fargues, J., & Clerjeau, M. (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. European Journal of Plant Pathology, 102, 441–449.
Article
Google Scholar