Skip to main content

Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii

Abstract

The lengths of conidiophores in fungal colonies of the melon powdery mildew pathogen Podosphaera xanthii Pollacci KMP-6 N cultured under greenhouse (natural) conditions differed markedly from those cultured in a growth chamber. We hypothesized that light wavelength was responsible for the differences in conidiophore length. In this study, we examined the effects of light-emitting diode (LED) irradiation (purple, blue, green, orange, and red light) and white light on colony development and conidiophore formation in KMP-6 N using a stereomicroscope and a high-fidelity digital microscope. Colonies on leaves were flat under greenhouse conditions and under red LED light irradiation but were stacked under growth chamber conditions and under purple, blue, green, and orange LED light irradiation. In addition, KMP-6 N formed catenated conidia comprising six conidia per conidiophore under greenhouse conditions and red light but more than seven conidia per conidiophore under growth chamber conditions and purple, blue, green, and orange light. Furthermore, almost none of the conidia on top of the conidiophores grown under blue light were fully constricted. Therefore, these fungi could not scatter their conidia and spread infection. This is the first report of the effects of LED lights on conidiophore formation in the melon powdery mildew fungus P. xanthii. The results provide insight into the mechanisms underlying the responses of conidiophores to light of specific wavelengths and conidial scatter from conidiophores of melon powdery mildew fungi.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Braun, U. (1987). A monograph of the Erysiphales (powdery mildews). Beih Nova Hedwig, 89, 1–700.

    Google Scholar 

  • Braun, U., & Cook, R. T. A. (2012). Taxonomic manual of the Erysiphales (powdery mildews). The Netherlands: CBS-KNAW Fungal Biodiversity Centre.

    Google Scholar 

  • Braun, U., Shishkoff, N., & Takamatsu, S. (2001). Phylogeny of Podosphaera sect. Sphaerotheca subsect. Magnicellulatae (Sphaerotheca fuliginea auct. s. Lat.) inferred from rDNA ITS sequences – A taxonomic interpretation. Schlechtendalia, 7, 45–52.

    Google Scholar 

  • Chen, R.-S., Chu, C., Cheng, C.-W., Chen, W.-Y., & Tsay, J.-G. (2008). Differentiation of two powdery mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. European Journal of Plant Pathology, 121, 1–8.

    CAS  Article  Google Scholar 

  • Cook, R. T. A., Denton, J. O., & Denton, G. (2015). Pathology of oak-wisteria powdery mildew. Fungal Biology, 119, 657–671.

    CAS  Article  PubMed  Google Scholar 

  • Cosme, B.-R., Josefina, L.-F., Raúl, A.-M., María Dolores, M.-R., José Armando, C.-F., José Benigno, V.-T., Fabiola Sary Mell, L.-S., & Raymundo Saúl, G.-E. (2012). Characterization of powdery mildew in cucumber plants under greenhouse conditions in the Culiacan Valley, Sinaloa, Mexico. African Journal of Agricultural Research, 7, 3237–3248.

    Google Scholar 

  • Hirata, T., Cunnington, J. H., Paksiri, U., Limkaisang, S., Shishkoff, N., Grigailiunaite, B., Sato, Y., & Takamatsu, S. (2000). Evolutionary analysis of subsection Magnicellulatae of Podosphaera section Sphaerotheca (Erysiphales) based on the rDNA internal transcribed spacer sequences with special reference to host plants. Canadian Journal of Botany, 78, 1521–1530.

    CAS  Article  Google Scholar 

  • Hosoya, K., Narisawa, K., Pitrat, M., & Ezura, H. (1999). Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breeding, 118, 259–262.

    Article  Google Scholar 

  • Huggenberger, F., Collins, M. A., & Skylakakis, G. (1984). Decreased sensitivity of Sphaerotheca fuliginea to fenarimol and other ergosterol-biosynthesis inhibitors. Crop Protection, 3, 137–149.

    Article  Google Scholar 

  • Kanto, T., Matsuura, K., Yamada, M., Usami, T., & Amemiya, Y. (2009). UV-B radiation for control of strawberry powdery mildew. Acta Horticulturae, 842, 359–362.

    CAS  Article  Google Scholar 

  • Kanto, T., Matsuura, K., Ogawa, T., Yamada, M., Ishiwata, M., Usami, T., & Amemiya, Y. (2014). A new UV-B lighting system controls powdery mildew of strawberry. Acta Horticulturae, 1049, 655–660.

    Article  Google Scholar 

  • Křístková, E., Lebeda, A., & Katovská, J. (2002). Response of Cucumis melo genotypes MR-1 and PI 124112 to Czech isolates of cucurbit powdery mildew. Acta Horticulturae, 588, 181–184.

    Article  Google Scholar 

  • Lebeda, A., & Sedláková, B. (2008). Fungicide resistance in populations of cucurbit powdery mildew. Journal of Plant Pathology, 90, S2.142.

    Google Scholar 

  • Matheron, M. E., & Porchas, M. (2007). Comparative performance and preservation of chemical management tools for powdery mildew on muskmelon. Acta Horticulturae, 731, 357–361.

    CAS  Article  Google Scholar 

  • Matsuda, Y., Ikeda, H., Moriura, N., Tanaka, N., Shimizu, K., Oichi, W., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006). A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology, 96, 967–974.

    Article  PubMed  Google Scholar 

  • McCreight, J. D. (2003). Genes for resistance to powdery mildew races 1 and 2U.S in melon PI 313970. Hortscience, 38, 591–594.

    Google Scholar 

  • McGrath, M. T., & Shishkoff, N. (2001). Resistance to triadimefon and benomyl: Dynamics and impact on managing cucurbit powdery mildew. Plant Disease, 85, 147–154.

    CAS  Article  Google Scholar 

  • McGrath, M. T., & Shishkoff, N. (2003). First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in the United States. Plant Disease, 87, 1007.

    Article  Google Scholar 

  • Mieslerová, B., & Lebeda, A. (2010). Influence of temperature and light conditions on germination, growth and conidiation of Oidium neolycopersici. Journal of Phytopathology, 158, 616–627.

    Google Scholar 

  • Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006a). An apparatus for collecting total conidia of Blumeria graminis f. sp. hordei from leaf colonies using electrostatic attraction. Plant Pathology, 55, 367–374.

    Article  Google Scholar 

  • Moriura, N., Matsuda, Y., Oichi, W., Nakashima, S., Hirai, T., Sameshima, T., Nonomura, T., Kakutani, K., Kusakari, S., Higashi, K., & Toyoda, H. (2006b). Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation. Mycological Research, 110, 18–27.

    Article  PubMed  Google Scholar 

  • Mottier, P. (2009). LED for lighting applications. New Jersey: Wiley.

    Book  Google Scholar 

  • Munger, H. M. (1979). The influence of temperature on powdery mildew resistance in cucumber. Cucurbit Genetics Cooperative Report, 2, 9–10.

    Google Scholar 

  • Nonomura, T., Matsuda, Y., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2009). Collection of highly germinative pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycological Research, 113, 364–372.

    Article  PubMed  Google Scholar 

  • Nonomura, T., Matsuda, Y., Yamashita, S., Akahoshi, H., Takikawa, Y., Kakutani, K., & Toyoda, H. (2013). Natural woody plant, Mallotus japonicus, as an ecological partner to transfer different pathotypic conidia of Oidium neolycopersici to greenhouse tomatoes. Plant Protection Science, 49, S33–S40.

    Article  Google Scholar 

  • Oichi, W., Matsuda, Y., Sameshima, T., Nonomura, T., Kakutani, K., Nishimura, H., Kusakari, S., & Toyoda, H. (2004). Consecutive monitoring for conidiogenesis by Oidium neolycopersici on tomato leaves with a high-fidelity digital microscope. Journal of General Plant Pathology, 70, 329–332.

    Article  Google Scholar 

  • Oichi, W., Matsuda, Y., Nonomura, T., Toyoda, H., Xu, L., & Kusakari, S. (2006). Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Disease, 90, 915–919.

    Article  Google Scholar 

  • Reifschneider, F. J. B., Boiteux, L. S., & Occhiena, E. M. (1985). Powdery mildew on melon (Cucumis melo) caused by Sphaerotheca fuliginea in Brazil. Plant Disease, 69, 1069–1070.

    Google Scholar 

  • Romero, D., Pérez-García, A., Rivera, M. E., Cazorla, F. M., & de Vicente, A. (2004). Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied Microbiology and Biotechnology, 64, 263–269.

    CAS  Article  PubMed  Google Scholar 

  • Romero, D., de Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., Torés, J. A., & Pérez-García, A. (2007). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56, 976–986.

    Article  Google Scholar 

  • Sameshima, T., Kashimoto, K., Kida, K., Matsuda, Y., Nonomura, T., Kakutani, K., Nakata, K., Kusakari, S., & Toyoda, H. (2004). Cytological events in tomato leaves inoculated with conidia of Blumeria graminis f. Sp. hordei and Oidium neolycopersici KTP-01. Journal of General Plant Pathology, 70, 7–10.

    Article  Google Scholar 

  • Schuerger, A. C., & Brown, C. S. (1997). Spectral quality affects disease development of three pathogens on hydroponically grown plants. Hortscience, 32, 96–100.

    CAS  PubMed  Google Scholar 

  • Shibuya, T., Itagaki, K., Tojo, M., Endo, R., & Kitaya, Y. (2011). Fluorescent illumination with high red-to-far-red ratio improves resistance of cucumber seedlings to powdery mildew. Hortscience, 46, 429–431.

    Google Scholar 

  • Suthaparan, A., Stensvand, A., Torre, S., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010a). Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. Plant Disease, 94, 339–344.

    Article  Google Scholar 

  • Suthaparan, A., Torre, S., Stensvand, A., Herrero, M. L., Pettersen, R. I., Gadoury, D. M., & Gislerød, H. R. (2010b). Specific light–emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Disease, 94, 1105–1110.

    Article  Google Scholar 

  • Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Mortensen, L. M., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2012a). Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Disease, 96, 1653–1660.

    CAS  Article  Google Scholar 

  • Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Telfer, K., Ruud, A., Cadle-Davidson, L., Mortensen, L., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2012b). Suppression of cucumber powdery mildew by UV-B is affected by background light quality. Phytopathology, 102, S4.116.

    Google Scholar 

  • Suthaparan, A., Torre, S., Mortensen, L. M., Gislerød, H. R., Solhaug, K. A., Stensvand, A., & Gadoury, D. M. (2012c). Interruption of the night period by UV-B suppresses powdery mildew of rose and cucumber. Acta Horticulturae, 956, 617–620.

    Article  Google Scholar 

  • Suthaparan, A., Stensvand, A., Solhaug, K. A., Torre, S., Telfer, K. H., Ruud, A. K., Mortensen, L. M., Gadoury, D. M., Seem, R. C., & Gislerød, H. R. (2014). Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant Disease, 98, 1349–1357.

    CAS  Article  Google Scholar 

  • Takikawa, Y., Kakutani, K., Nonomura, T., Matsuda, Y., & Toyoda, H. (2011). Conidia of Erysiphe trifoliorum attempt penetration twice during a two-step germination process on non-host barley leaves and an artificial hydrophobic surface. Mycoscience, 52, 204–209.

    Article  Google Scholar 

  • Takikawa, Y., Nonomura, T., Miyamoto, S., Okamoto, N., Murakami, T., Matsuda, Y., Kakutani, K., Kusakari, S., & Toyoda, H. (2015). Digital microscopic analysis of developmental process of conidiogenesis by powdery mildew pathogens isolated from melon leaves. Phytoparasitica, 43, 517–530.

    CAS  Article  Google Scholar 

  • Wang, H., Jiang, Y. P., Yu, H. J., Xia, X. J., Shi, K., Zhou, Y. H., & Yu, J. Q. (2010). Light quality affects incidence of powdery mildew, expression of defense-related genes and associated metabolism in cucumber plants. European Journal of Plant Pathology, 127, 125–135.

    CAS  Article  Google Scholar 

  • Willocquet, L., Colombet, D., Rougier, M., Fargues, J., & Clerjeau, M. (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. European Journal of Plant Pathology, 102, 441–449.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant for Scientific Research from Faculty of Agriculture, Kindai University. In addition, the English in this document has been checked by at least two professional editors, both native speakers of English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Nonomura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Nishimura, S., Yagi, K. et al. Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii. Phytoparasitica 46, 31–43 (2018). https://doi.org/10.1007/s12600-017-0631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-017-0631-9

Keywords

  • Catenated conidia
  • Electrostatic spore collection probe
  • Electrostatic insulator plate
  • LED lights
  • Constriction