Phytoparasitica

, Volume 45, Issue 4, pp 599–609 | Cite as

Effect of simultaneous and sequential inoculations of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans on eggplant in sand mix and fly ash mix soil

Article

Abstract

Effects simultaneous and sequential inoculations of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans were studied on the growth, chlorophyll and carotenoid contents of eggplants grown in 25% fly ash and 25% sand mix soil. Plants grown in 25% fly ash mix soil had lesser plant growth than grown in 25% sand ash mix soil. Inoculation of M. incognita / R. solanacearum or P. vexans caused reduction in plant growth, chlorophyll and carotenoid contents in both types of soils but these pathogens in combination caused a greater reduction in than individual inoculation. Inoculation of M. incognita 20 days prior to R. solanacearum caused a greater reduction in plant growth than inoculation of M. incognita prior to P. vexans. Inoculation of P. vexans prior to R. solanacearum caused a lesser reduction in plant growth, chlorophyll and carotenoid contents than inoculation of P. vexans prior to M. incognita. Inoculation of R. solanacearum 20 days prior to M. incognita caused a greater reduction in plant growth, chlorophyll and carotenoid contents than inoculation of R. solanacearum prior to P. vexans. Galling and multiplication of M. incognita was higher in plants grown in 25% sand amended soil than with 25% fly ash soil. R. solanacearum and P. vexans had adverse effects on galling and nematode multiplication. Wilt and blight indices caused by R. solanacearum and P. vexans were 3 respectively. Wilt and blight indices were 4 when two pathogens were inoculated together.

Keywords

Brinjal Chlorophyll Carotenoid Fly ash Sand 

References

  1. Ahmad, L., & Siddiqui, Z. A. (2017). Effects of Meloidogyne incognita, Alternaria dauci and Fusarium solani on carrot in different types of soil. Acta Phytopathologica et Entomologica Hungarica, 52, 39–48.CrossRefGoogle Scholar
  2. Bhagawati, B., Gogi, R., & Phukan, P. N. (1996). Interaction of Meloidogyne incognita and Pseudomonas solanacearum on jute. Indian Journal of Nematology, 26, 259–261.Google Scholar
  3. Black, C. A. (1973). Soil plant relationships. New Delhi: Wiley.Google Scholar
  4. Chopra, S. L., & Kanwar, J. S. (1982). Analytical agricultural chemistry. New Delhi: Kalyani.Google Scholar
  5. Dick, W. A., Hao, Y. L., Stehouwer, R. C., Bigham, J. M., Wolfe, W. E., Adriano, D., Beeghly, J. H. and Haefner, R. J. (2000). Beneficial uses flue gas desulphurization by-products: Examples and case studies of land application. In: J. M. Bartels and W a. Dick (eds): Land Application of Agricultural, Industrial and Municipal by-products. Soil science Society of America, Madison, USA: American Society of Agronomy, pp. 505-536.Google Scholar
  6. Dubey, P. S., Pawar, K., & Trivedi, L. (1982). Effect of fly ash deposition on photosynthetic pigment and dry matter production of wheat and gram. Agro-Ecosystems, 8, 137–140.CrossRefGoogle Scholar
  7. Francois, L. E. (1984). Effect of excess boron on tomato yield, fruit sizeand vegetable growth. Journal of the American Society for Horticultural Science, 109, 322–324.Google Scholar
  8. Garbeva, P., Veen, J. A. V., & Elsas, J. D. V. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.CrossRefPubMedGoogle Scholar
  9. Goodman, R. N., Király, Z. and Zaitlin, M. (1967). The Biochemistry and Physiology of Infectious Plant Disease. Z. Király And M. Zaitlin (Eds.) van Nostrand, Princeton, New Jersey. 354 pp.Google Scholar
  10. Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 29, 65–87.CrossRefPubMedGoogle Scholar
  11. Hazarika, K. (2003). Interrelationship of Meloidogyne incognita and Pseudomonas solanacearum on jute and management of the disease complex caused by them. Ph.D. (nematology) thesis, submitted to Assam Agricultural University Johrat-13, India.Google Scholar
  12. Hussain, Z., & Bora, B. C. (2009). Interrelationship of Meloidogyne incognita and Ralstonia solanacearum complex in brinjal. Indian Journal of Nematology, 39, 41–45.Google Scholar
  13. Jackson, M. L. (1958). Soil chemical analysis. Englewood Cliffs: Prentice hall.Google Scholar
  14. Jain, M. R., & Bhatnagar, M. K. (1980). Efficacy of certain chemicals in the control of fruit rot of brinjal. Pesticides, 14, 27–28.Google Scholar
  15. Johnson, H. A., & Powell, N. T. (1969). Influence of root-knot nematodes on bacterial wilt development in flue-cured tobacco. Phytopathology, 59, 486–491.Google Scholar
  16. Kaur, S., Kaur, R., Kaur, P., & Singh, D. (1985). Studies on wilt and fruit rot of brinjal caused by Fusarium semitectum. Indian Phytopathology, 38, 736–738.Google Scholar
  17. Khan, M. R., & Khan, M. W. (1996). Effect of fly ash on plant growth and yield of tomato. Environmental Pollution, 92, 105–112.CrossRefPubMedGoogle Scholar
  18. Khan, M., & Siddiqui, Z. A. (2017). Effects of fly ash amendments, Ralstonia solanacearum, Meloidogyne incognita and Phomopsis vexans on the growth of Solanum melongena. Acta Phytopathologica et Entomologica Hungarica. https://doi.org/10.1556/038.52.2017.017.
  19. Khan, M. R., Khan, M. W., & Singh, K. (1997). Management of root-knot disease of tomato by the application of fly ash in soil. Plant Pathology, 46, 33–43.CrossRefGoogle Scholar
  20. Kirkpatrick, J. D., Mai, W. F., Parker, K. G., & Fisher, E. G. (1964). Effect of phosphorus and potassium nutrition of sour cherry on the soil population levels of five plant parasitic nematodes. Phytopathology, 54, 706–712.Google Scholar
  21. Koenning, S. R., & Barker, K. R. (1995). Soybean photosynthesis and yield as influenced by Heterodera glycines, soil type and irrigation. Journal of Nematology, 27, 51–62.PubMedPubMedCentralGoogle Scholar
  22. Koenning, S. R., Anand, S. C., & Wrather, J. R. (1988). Effect of within-field variation in soil texture on Heterodera glycines and soybean yield. Journal of Nematology, 12(5), 373–380.Google Scholar
  23. Korcak, R. F. (1995). Utilization of coal combustion by-product in agriculture and horticulture. In D. L. Karlen, R. J. Wright, & W. D. Kemper (Eds.), Agricultural utilization of urban and industrial by-products (pp. 107–130). Madison: ASA Special Publication.Google Scholar
  24. Lehmann, J., & Schroth, G. (2003). Nutrient leaching. In G. Schroth & F. L. Sinclair (Eds.), Trees, crops and soil fertility (pp. 151–165). Wallingford: CAB International.Google Scholar
  25. Lucas, G. B., Sasser, J. N., & Kelman, A. (1955). The relationship of root-knot nematodes to Granville wilt resistance in tobacco. Phytopathology, 45, 537–540.Google Scholar
  26. Mackinney, G. (1941). Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry, 140, 315–322.Google Scholar
  27. Mallesh, S. B., Lingraju, S., Byadgi, A. S., Hegde, Y. R., Mokashi, A. N., & Krishnaraj, P. U. (2009). Bioefficacy of rhizobacteria on root-knot / wilt disease complex in coleus and ashwganda. Karnataka Journal of Agricultural Sciences, 22, 1116–1120.Google Scholar
  28. Martens, D. C., Schnappinger, M. G., & Zelazny, L. W. (1970). The plant availability of potassium in fly ash. Proceedings of the Soil Science Society of America, 34, 453–456.CrossRefGoogle Scholar
  29. Mishra, M., Sahu, R. K., & Padhy, R. N. (2005). Growth, yield, metabolism and elemental status of green gram (Phaseolus aureus) and til (Sesamum indicum) grown in soils amended with fly ash. Fresenius Environmental Bulletin, 14, 559–564.Google Scholar
  30. Mishra, M., Sahu, R. K., & Padhy, R. N. (2007). Growth, yield, metabolism and elemental status of rice (Oryza sativa L.) grown in fly ash amended soils. Ecotoxicology, 16, 271–278.CrossRefPubMedGoogle Scholar
  31. Nelson, D. W., & Sommers, L. F. (1972). A simple digestion procedure for estimation of total nitrogen in soil and sediments. Journal of Environmental Quality, 1, 423–425.CrossRefGoogle Scholar
  32. Parab, N., Mishra, S., & Bhonde, S. R. (2012). Prospects of bulk utilization of fly ash in agriculture for integrated nutrient management. Bulletin of the National Institute of Ecology, 23, 31–46.Google Scholar
  33. Partridge, J. E. (2008). Bacterial wilt of alfalfa. Department of plant pathology: University of Nebraska-Lincoln http://nudistance.unl.edu/homer/disease/agron/alfalfa/AlfBacWi.html.Google Scholar
  34. Pitcher, R. S. (1965). Interrelationships of nematodes and other pathogens of plants. Helminthologia Abstracts, 34, 1–17.Google Scholar
  35. Ravichandra, N. G. (2014). Horticultural nematology. New Delhi: Springer.CrossRefGoogle Scholar
  36. Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant diseases. New York: John’s Swift Co..Google Scholar
  37. Samy, N. T., Mishra, M., Sahu, R. K., & Padhy, R. N. (2010). Growth, yield and metabolism of rice (Oryza sativa L.) during repeated applications of fly ash on soil. Advanced Food Science, 32, 110–117.Google Scholar
  38. Sarangi, P. K., Mishra, T. K., & Mishra, P. C. (1997). Soil metabolism, growth and yield of Oryza sativa L. in fly ash amended soil. Indian Journal of Environmental Sciences, 1, 17–24.Google Scholar
  39. Sharma, P. D. (2001). Microbiology. Meerut: Rastogi and Company.Google Scholar
  40. Siddiqui, Z. A., Nesha, R., Singh, N. and Alam, S. (2012). Interactions of plant parasitic nematodes and plant pathogenic bacteria. In (ed. D. K. Maheshwari) Bacteria in Agrobiology. Plant Probiotics. Springer-Verlag: Berlin Heidelberg. Pp 251-267, ISBN 978-3-642-27515-9.Google Scholar
  41. Sikora, R. A., & Fernandez, E. (2005). Nematode parasites of vegetables. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 319–392). Wallingford: CABI publishing.CrossRefGoogle Scholar
  42. Sitaramaiah, K., & Sinha, S. K. (1984a). Histological aspects of Pseudomonas and root-knot nematode wilt complex in brinjal. Indian Journal of Nematology, 14, 175–178.Google Scholar
  43. Sitaramaiah, K., & Sinha, S. K. (1984b). Interaction between Meloidogyne javanica and Pseudomonas solanacearum on brinjal. Indian Journal of Nematology, 14, 1–5.Google Scholar
  44. Slack, D. A. (1963). Introduction. Symposium of interrelationships between nematodes and other agents causing plant diseases. Phytopathology, 53, 27–47.Google Scholar
  45. Southey, J. F. (1986). Laboratory methods for work with plant and soil nematodes. Fisheries and Food, Her Majesties Stationary Office, London: Ministry of Agric.Google Scholar
  46. Stewart, R. N., & Schindler, A. F. (1956). The effect of some ectoparasitic and endoparasitic nematodes on the expression of bacterial wilt in carnations. Phytopathology, 46, 219–222.Google Scholar
  47. Swain, P. K., Rath, J. C., & Mishra, S. K. (1987). Interaction between Meloidogyne incognita and Pseudomonas solanacearum on brinjal. Indian Journal of Nematology, 17, 61–71.Google Scholar
  48. Trudgill, D. L., & Phillips, M. S. (1997). Nematode population dynamics, threshold levels and estimation of crop losses. Food and Agriculture Organization, Plant Production and Protection Paper-144, Rome. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations