Skip to main content
Log in

Change in activity of detoxifying enzymes in directionally selected population of tea mosquito bug (Helopeltis theivora) (Heteroptera: Miridae) by an organophosphate insecticide

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The heteropteran bug, Helopeltis theivora is a polyphagous pest attacking the foliage crop tea and several other crops grown in the old world tropics. Application of synthetic insecticides, especially organophosphate was so far an effective and economic means of conventional management of the pest. Severe selection (bottlenecking) of H. theivora population by exposure to LC80 dose of an organophosphate insecticide, monocrotophos resulted in 105 fold increase in tolerance level in the third generation. The total activity of general esterases (GE) and cytochrome P450 mono-oxygenases (CYP450) analogously increased in insecticide-selected F2 generation by 16.4 and 9.5 fold, respectively. Such enhanced enzyme activity could be related to the higher tolerance levels of the selected bug. Electropherogram of GE and CYP450 of the insecticide-selected generations indicated a change in isozyme profile with their elevated expressions. Induced isozymes in insecticide selected generations were only partially inhibited, when blocked by the insecticide. These findings imply that different groups (zones) of isozymes of the detoxifying enzymes are involved in imparting higher tolerance in insecticide-selected generations. Isozyme profiles of defence enzymes can be used as indices for identifying tolerance level in the field population of H. theivora, enabling tea planters to carry out rapid monitoring of the tolerance status of the pest populations, thereby providing a ready clue to choose an effective insecticide for pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal, A., Prajapati, R., Singh, O. P., Raza, S. K., & Thakur, L. K. (2015). Pesticide residue in water-a challenging task in India. Environmental Monitoring and Assessment, 187(2), 54.

    Article  PubMed  Google Scholar 

  • Anonymous. (1990). Proposed Insecticide/Acaricide Susceptibility Tests. EPPO Bulletin, 20(2), 389–404.

    Article  Google Scholar 

  • Anonymous (2010). Special bulletin on Tea mosquito bug Helopeltis theivora Waterhouse. Plant Protection Division, Tea Research Association, Jorhat, Assam, India.

  • Anonymous (2014). Plant Protection Code Ver. 3.0. Tea board of India, Ministry of Commerce and Industry, Govt. of India, Kolkata.

  • Banerjee, B. (2001). Tea. In F. T. Last (Ed.), The woody pernnials (pp. 361–378). Amsterdam: Elsevier.

    Google Scholar 

  • Basnet, K., & Mukhopadhyay, A. (2014). Biocontrol potential of the lynx spider Oxyopes javanus (Araneae: Oxyopidae) against the tea mosquito bug, Helopeltis theivora (Heteroptera: Miridae). International Journal of Tropical Insect Science, 34(04), 232–238.

    Article  Google Scholar 

  • Basnet, K., Saha, D., & Mukhopadhyay, A. (2015). Enhancement of Resistance vis-à-vis Defence-Enzyme Activity in Tea Mosquito Bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae) Selected Through Exposure to Sub-lethal Dose of Monochrotophos. Proceedings of the Zoological Society (Calcutta), 68(2), 184–188.

    Article  Google Scholar 

  • Brogdon, W. G., & McAllister, J. C. (1998). Insecticide resistance and vector control. Emerging Infectious Diseases, 4(4), 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brogdon, W. G., McAllister, J. C., & Vulule, J. (1997). Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233–237.

    CAS  PubMed  Google Scholar 

  • Butler, M. J., & Lachance, M. A. (1987). The use of N,N,N',N'-tetramethylphenylenediamine to detect peroxidase activity on polyacrylamide electrophoresis gels. Analytical Biochemistry, 162(2), 443–445.

    Article  CAS  PubMed  Google Scholar 

  • Chang, K. (2015). World tea production and trade Current and future development. Food and Agricultue Organization of the United Nations, Rome, 17.

  • Chaudhury, T. C. (1999). Global Advances in Tea Science. New Delhi: Aravali Books.

    Google Scholar 

  • Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348.

    Article  CAS  Google Scholar 

  • Cranham, J. E. (1966). Tea Pests and Their Control. Annual Review of Entomology, 11(1), 491–514.

    Article  CAS  Google Scholar 

  • Das, G. M. (1957). Pests in relation to Environment. Two and a Bud, 4, 14–14.

    Google Scholar 

  • Devonshire, A. L., & Field, L. M. (1991). Gene Amplification and Insecticide Resistance. Annual Review of Entomology, 36(1), 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Devonshire, A. L., & Sawicki, R. M. (1979). Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature, 280(5718), 140–141.

    Article  Google Scholar 

  • Feyereisen, R. (1999). Insect P450 Enzymes. Annual Review of Entomology, 44(1), 507–533.

    Article  CAS  PubMed  Google Scholar 

  • Ffrench-Constant, R. H., Daborn, P. J., & Le Goff, G. (2004). The genetics and genomics of insecticide resistance. Trends in Genetics, 20(3), 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Finney, D. J. (1971). Probit Analysis. London: Cambridge University Press.

    Google Scholar 

  • Georghiou, G. P., & Pasteur, N. (1978). Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. Journal of Economic Entomology, 71(2), 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Gurusubramanian, G., & Bora, S. (2007). Relative toxicity of some commonly used insecticides against adults of Helopeltis theivora Waterhouse (Miridae: Hemiptera) collected from Jorhat area tea Plantations, South Assam, India. Resistance Pest Management Newsletter, 17, 8–12.

    Google Scholar 

  • Gurusubramanian, G., Rahman, A., Sarmah, M., Ray, S., & Bora, S. (2008). Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. Journal of Environmental Biology, 29(6), 813–826.

    CAS  PubMed  Google Scholar 

  • Han, Y., Wu, S., Li, Y., Liu, J.-W., Campbell, P. M., Farnsworth, C., et al. (2012). Proteomic and molecular analyses of esterases associated with monocrotophos resistance in Helicoverpa armigera. Pesticide Biochemistry and Physiology, 104(3), 243–251.

    Article  CAS  Google Scholar 

  • Hazarika, L. K., Bhuyan, M., & Hazarika, B. N. (2009). Insect Pests of Tea and Their Management. Annual Review of Entomology, 54(1), 267–284.

    Article  CAS  PubMed  Google Scholar 

  • Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653–665.

    Article  CAS  PubMed  Google Scholar 

  • Komagata, O., Kasai, S., & Tomita, T. (2010). Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology, 40(2), 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Latip, S. N. H., Muhamad, R., Manjeri, G., & Tan, S. G. (2010). Development of microsatalite markers for Helopeltis theivora Waterhouse (Hemiptera: Miridae). African Journal of Biotechnology, 9(28), 4478–4481.

    CAS  Google Scholar 

  • Lopez-Soler, N., Cervera, A., Moores, G. D., Martinez-Pardo, R., & Garcera, M. D. (2008). Esterase isoenzymes and insecticide resistance in Frankliniella occidentalis populations from the south-east region of Spain. Pest Management Science, 64(12), 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  PubMed  Google Scholar 

  • Maa, C. J. W., & Liao, S. (2000). Culture dependent variation in Esterase isozymes and malathion susceptibility of diamondback moth, Plutella xylostella L. Zoological Studies, 39(4), 375–386.

    CAS  Google Scholar 

  • Martin, T., Chandre, F., Ochou, O. G., Vaissayre, M., & Fournier, D. (2002). Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pesticide Biochemistry and Physiology, 74(1), 17–26.

    Article  Google Scholar 

  • Misra, R. K. (1989). Toxicity of various insecticides against Heliothis armigera Hub. Guntur strain. Pesticide Research Journal, 1, 105–109.

    Google Scholar 

  • Muraleedharan, N. (1992). Pest control in Asia. In K. C. Willson & M. N. Clifford (Eds.), Tea: cultivation to consumption. Dordrecht: Springer Netherlands.

    Google Scholar 

  • Muraleedharan, N. (2007). Tea insects: ecology and control. In D. Pimentel (Ed.), Encyclopedia of pest management (pp. 672–674). London: CRC Press.

    Google Scholar 

  • Perera, M. D., Hemingway, J., & Karunaratne, S. P. (2008). Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malaria Journal, 7, 168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rattan, P. S. (1992). Pest and disease control in Africa. In K. C. Wilson & M. N. Clifford (Eds.), Tea: cultivation to consumption (pp. 331–352). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Roy, S., Gurusubramanian, G., & Mukhopadhyay, A. (2009a). Variation of resistance to endosulfan in tea mosquito bug, Helopeltis theivora Waterhouse (Heteroptera: Miridae) in tea plantation of the Sub–Himalayan Dooars, northern West Bengal, India. Journal of Entomology and Nematology, 1(3), 29–35.

    CAS  Google Scholar 

  • Roy, S., Mukhopadhyay, A., & Gurusubramanian, G. (2009b). The Synergists Action of Piperonyl Butoxide on Toxicity of Certain Insecticides Applied Against Helopeltis theivora Waterhouse (Heteroptera: Miridae) in the Dooars Tea Plantations of North Bengal, India. Journal of Plant Protection Research, 49(2), 225–228.

    Article  CAS  Google Scholar 

  • Roy, S., Mukhopadhyay, A., & Gurusubramanian, G. (2010). Development of resistance to endosulphan in populations of the tea mosquito bug Helopeltis theivora (Heteroptera: Miridae) from organic and conventional tea plantations in India. International Journal of Tropical Insect Science, 30(02), 61–66.

    Article  Google Scholar 

  • Roy, S., Muraleedharan, N., Mukhapadhyay, A., & Handique, G. (2015). The tea mosquito bug, Helopeltis theivora Waterhouse (Heteroptera: Miridae): its status, biology, ecology and management in tea plantations. International Journal of Pest Management, 61(3), 179–197.

    Article  CAS  Google Scholar 

  • Saha, D., Mukhopadhyay, A., & Bahadur, M. (2012). Variation in the Activity of Three Principal Detoxifying Enzymes in Major Sucking Pest of Tea, Helopeltis theivora Waterhouse (Heteroptera: Miridae) from Sub-Himalayan Tea Plantations of West Bengal, India. Proceedings of the Zoological Society (Calcutta), 66(2), 92–99.

    Article  Google Scholar 

  • Sannigrahi, S., & Talukdar, T. (2003). Pesticide use patterns in Dooars tea industry. Two and a Bud, 50, 35–38.

    Google Scholar 

  • Schuh, R. T. (1995). Plant Bugs of the World (Insecta: Heteroptera: Miridae) Systematic Catalog, Distributions, Host List and Bibliography. New York: The New York Entomological Society, American Museum of Natural History.

  • Sivapalan, P. (1999). Pest management in tea. In N. K. Jain (Ed.), Global Advances in Tea Science (pp. 625–646). New Delhi: Aravali Books.

    Google Scholar 

  • Srikumar, K. K., & Bhat, S. P. (2013). Biology of the tea mosquito bug (Helopeltis theivora Waterhouse) on Chromolaena odorata (L.) R.M. King & H. Rob. Chilean Journal of Agricultural Research, 73(3), 309–314.

    Article  Google Scholar 

  • Srinivas, R., Udikeri, S. S., Jayalakshmi, S. K., & Sreeramulu, K. (2004). Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 137(3), 261–269.

    Article  CAS  Google Scholar 

  • Stenersen, J. (2004). Chemical Pesticides Mode of Action and Toxicology. Boca Raton: CRC Press.

    Book  Google Scholar 

  • van Asperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8(4), 401–416.

    Article  CAS  Google Scholar 

  • Wu, S., Yang, Y., Yuan, G., Campbell, P. M., Teese, M. G., Russell, R. J., et al. (2011). Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 41(1), 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S. J. (2014). The Toxicology and Biochemistry of Insecticides. Boca Raton: CRC Press.

    Google Scholar 

  • Zhu, Y. C., & Luttrell, R. (2012). Variation of acephate susceptibility and correlation with esterase and glutathione S-transferase activities in field populations of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology, 103(3), 202–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Head, DST-FIST and UGC-SAP supported Department of Zoology, the University of North Bengal for providing us with necessary infrastructures and other help for carrying out the research. The financial assistance provided by the University Grants Commission, New Delhi in the form of BSR fellowship, vide letter No. F.25-1/2013-14 (BSR)/7-134/2007(BSR), Dated: 30th May 2014 to Mr. Kumar Basnet is duly acknowledged. We are also thankful to the managers of various tea plantations for their cooperation during sampling. We would also like to thank the Tea Research Association authority both at Tocklai and Nagrakata for their help in arranging visits to tea estates for specimen sampling and providing literature related to our study. Thanks are also extended to Mr. Tinku Roy for helping in maintaining insect culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basnet, K., Bahadur, M. & Mukhopadhyay, A. Change in activity of detoxifying enzymes in directionally selected population of tea mosquito bug (Helopeltis theivora) (Heteroptera: Miridae) by an organophosphate insecticide. Phytoparasitica 45, 527–539 (2017). https://doi.org/10.1007/s12600-017-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-017-0603-0

Keywords

Navigation