Skip to main content

Advertisement

Log in

The potential of fludioxonil for anthracnose control on China chili fruit

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Anthracnose, caused by Colletotrichum scovillei, is one of the most destructive disease which causes massive yield losses in chili. Our preliminary study has demonstrated that fludioxonil had high activity against mycelial growth and spore germination of C. scovillei but it has not been labeled on chili. The aim of this study was to investigate the impact of fludioxonil on C. scovillei infection. In greenhouse and field trials, fludioxonil was applied to chili plants to determine the duration of protection of fruit provided by this compound against chili anthracnose. Fludioxonil may have impact on the early stage of chili anthracnose infection by inhibiting the germ tube elongation and appressorium formation. Moreover, it inhibited the secondary infection of C. scovillei by inhibiting the sporulation, germination of spores and formation of appressoria. Fludioxonil provided high level of protective activity for up to 96 h, as well as excellent curative activity of within 24 h in vivo tests. In field trials, fludioxonil can reduce the incidence and severity of chili anthracnose while giving a higher chili yield. These results suggest that fludioxonil could be a promising fungicide for anthracnose control in chili production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostini, J. P., & Timmer, L. W. (1992). Selective isolation procedures for differentiation of two strains of Colletotrichum gloesporioides from citrus. Plant Disease, 76, 1176–1178.

    Article  Google Scholar 

  • Amador-Ramírez, M. D., Mojarro-Dávila, F., & Velásquez-Valle, R. (2007). Efficacy and economics of weed control for dry chill pepper. Crop Protection, 26, 677–682.

    Article  Google Scholar 

  • Chaky, J., Anderson, K., Moss, M., & Vaillancourt, L. (2001). Surface hydrophobicity and surface rigidity induce spore germination in Colletotrichum graminicola. Phytopathology, 91, 558–564.

    Article  CAS  PubMed  Google Scholar 

  • Damm, U., Cannon, P. F., Woudenberg, J. H., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao, Y. Z., Zhang, C., Liu, F., Wang, W. Z., Liu, L., Cai, L., et al. (2017). Colletotrichum species causing anthracnose disease of chili in china. Persoonia, 38.

  • Ellis, M. L., Broders, K. D., Paul, P. A., & Dorrance, A. E. (2011). Infection of soybean seed by Fusarium graminearum and effect of seed treatments on disease under controlled conditions. Plant Disease, 95, 401–407.

    Article  Google Scholar 

  • Errampalli, D. (2004). Effect of fludioxonil on germination and growth of Penicillium expansum and decay in apple cvs. Empire and Gala. Crop Protection, 23, 811–817.

    Article  CAS  Google Scholar 

  • FAO. (2014). Food and Agriculture Organization of the United Nations Statistics Division. http://www.fao.org/faostat/en/#data/QC.

  • Gehmann, K., Nyfeler, R., Leadbeater, A. J., Nevill, D., & Sozzi, D. (1990). CGA 173506: a new phenylpyrrole fungicide for broad-spectrum disease control. Brighton Crop Protection Conference, Pests and Diseases, 2, 369–376.

    Google Scholar 

  • Harp, T., Kuhn, P., Roberts, P. D., & Pernezny, K. L. (2014). Management and cross-infectivity potential of Colletotrichum acutatum causing anthracnose on bell pepper in Florida. Phytoparasitica, 42, 31–39.

    Article  CAS  Google Scholar 

  • Hong, J. K., Yang, H. J., Jung, H., Dong, J. Y., Sang, M. K., & Jeun, Y. C. (2015). Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathology Journal, 31, 269–277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacomi-Vasilescu, B., Avenot, H., Bataillé-Simoneau, N., Laurent, E., & Guénard, M. (2004). In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Protection, 23, 481–488.

    Article  CAS  Google Scholar 

  • Kanetis, L., Förster, H., & Adaskaveg, J. E. (2007). Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mold. Plant Disease, 91, 1502–1511.

    Article  CAS  Google Scholar 

  • Kanto, T., Uematsu, S., Tsukamoto, T., Moriwaki, J., Yamagishi, N., & Usami, T. (2014). Anthracnose of sweet pepper caused by Colletotrichum scovillei, in Japan. Journal of General Plant Pathology, 80, 73–78.

    Article  Google Scholar 

  • Kunova, A., Pizzatti, C., & Cortesi, P. (2013). Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest Management Science, 69, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, C. S., & Lee, S. G. (2002). Occurrence and ecological characteristics of red pepper anthracnose. Research in plant disease, 8, 120–123.

    Article  Google Scholar 

  • Lee, M. H., & Bostock, R. M. (2006). Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology, 96, 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  • Leroux, P. (1996). Recent developments in the mode of action of fungicides. Pest Management Science, 45, 191–197.

    Article  Google Scholar 

  • Lewis-Ivey, M. L., Nava-Diaz, C., & Miller, S. A. (2004). Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Disease, 88, 1198–1204.

    Article  Google Scholar 

  • Li, H. X., & Xiao, C. L. (2008). Baseline sensitivities to fludioxonil and pyrimethanil in Penicillium expansum, populations from apple in Washington state. Postharvest Biology Technology, 47, 239–245.

    Article  CAS  Google Scholar 

  • Li, J. T., Fan, H. F., Wang, J. M., & Liu, F. (2013). Toxicity and field control efficacy of four fungicides against Sclerotium rolfsii. Chinese Journal of Oil Crop Sciences, 35, 686–691.

    Google Scholar 

  • Li, Q., Han, Y. Z., & Zhang, G. C. (2009). Status and development trends of hot pepper industry home and abroad. Hubei Agricultural Science, 9, 2278–2281.

  • Lin, Q., Lv, Z., & Huang, R. (2004). Screening of pepper germplasm for resistance to TMV, CMV, phytophthora blight and anthracnose. Southwest China Journal of Agricultural Sciences, 18, 108–110.

    Google Scholar 

  • Liu, B., Wang, L. Y., Huang, X. G., Cui, R. Q., Song, S. L., & University, J. A. (2013). Identification of a new anthracnose of peppers and screening of fungicides. Biological Disaster Science, 36, 262–264.

    CAS  Google Scholar 

  • Pakdeevaraporn, P., Wasee, S., Taylor, P. W. J., & Mongkolporn, O. (2005). Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breeding, 124, 206–208.

    Article  Google Scholar 

  • Paredes, B. L. S. G., & Munoz, F. R. (2002). Effect of different fungicides in the control of Colletotrichum acutatum, causal agent of anthracnose crown rot in strawberry plants. Crop Protection, 21, 11–15.

    Article  Google Scholar 

  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., & Mongkolporn, O. (2008). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chili ( Capsicum spp.) in Thailand. Plant Pathology, 57, 562–572.

    Article  Google Scholar 

  • Valente, M., Collina, M., Ciriani, A., Contaldo, N., Coatti, M., & Serrati, L. (2012). Control of Stemphylium vesicarium on pear with fludioxonil: efficacy, sensitivity monitoring, residues on fruits. Giornate Fitopatologiche Milano Marittima, 245–254.

  • Veloukas, T., & Karaoglanidis, G. S. (2012). Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea, and fungal baseline sensitivity. Pest Management Science, 68, 858–864.

    Article  CAS  PubMed  Google Scholar 

  • Wedge, D. E., Smith, B. J., Quebedeaux, J. P., & Constantin, R. J. (2007). Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection, 26, 1449–1458.

    Article  CAS  Google Scholar 

  • Xia, H., Zhu, H. J., Zhou, Q., & Gao, B. D. (2012). Pathogen identification of a new anthracnose of pepper in Zhijiang, Hunan. Acta Phytopathologica Sinica, 42, 120–125.

    Google Scholar 

  • Zhang, J. X. (2007). The potential of a new fungicide fludioxonil for stem end rot and green mold control on Florida citrus fruit. Postharvest Biology Tecnology, 46, 262–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Key Research Development Program of China (2016YFD0200500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the National Key Research Development Program of China (2016YFD0200500)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YY., He, LF., Li, BX. et al. The potential of fludioxonil for anthracnose control on China chili fruit. Phytoparasitica 45, 281–292 (2017). https://doi.org/10.1007/s12600-017-0601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-017-0601-2

Keywords

Navigation