Skip to main content
Log in

Transmission of ‘Candidatus Phytoplasma asteris’ (16SrI) by Osbornellus horvathi (Matsumura 1908) co-infected with “Ca. Phytoplasma phoenicium” (16SrIX)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2016

Abstract

High population levels of Osbornellus horvathi (Matsumura 1908) in Mediterranean natural environments and our previous findings of adults infected by ‘Candidatus Phytoplasma phoenicium’, in Sicily in 2012, highlight the potential role of this species as a phytoplasma vector. In the present work, O. horvathi and other Auchenorrhyncha species were collected using sticky traps between May-October of 2013 in a natural area in Sicily. The insects were analyzed for phytoplasma detection and characterization. Among the 20 Auchenorrhyncha species collected, only O. horvathi was positive for phytoplasmas. Phytoplasma transmission to periwinkle and broad bean plants by field-collected phytoplasma-infected O. horvathi individuals was also carried out. The number and composition of Auchenorrhyncha populations in the area were described together with information on the biology of O. horvathi. ‘Candidatus Phytoplasma asteris’ was successfully transmitted to broad bean and periwinkle by field-collected ‘Ca. P. asteris’ and ‘Ca. P. phoenicium’ double-infected O. horvathi, thus highlighting its vector competence for the former phytoplasma. Further studies are required to assess the ability of O. horvathi to transmit ‘Ca. P. phoenicium’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Jawdah, Y., Sobh, H., & Akkary, M. (2009). First report of Almond witches’-broom phytoplasma (‘Candidatus Phytoplasma phoenicium’) causing a severe disease on nectarine and peach trees in Lebanon. EPPO Bulletin, 39, 94–98.

    Article  Google Scholar 

  • Abou-Jawdah, Y., Abdel Sater, A., Jawhari, M., Sobh, H., Abdul-Nour, H., Bianco, P. A., et al. (2014). Asymmetrasca decedens (Cicadellidae, Typhlocybinae), a natural vector of ‘Candidatus Phytoplasma phoenicium’. Annals of Applied Biology, 165, 395–403.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bagadia, P. G., Polashock, J., Bottner-Parker, K. D., Zhao, Y., Davis, R. E., & Lee, I. M. (2013). Characterization and molecular differentiation of 16SrI-E phytoplasmas associated with blueberry stunt disease in New Jersey. Molecular and Cellular Probes, 27(2), 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences, 5, 1763–1788.

    Article  Google Scholar 

  • Bertin, S., & Bosco, D. (2013). Insect vector transmission assays. In M. Dickinson & J. Hodgetts (Eds.), Phytoplasma: Methods and protocols, methods in molecular biology (pp. 87–108). New York: Humana Press.

    Chapter  Google Scholar 

  • Bosco, D., & D’Amelio, R. (2010). Transmission specificity and competition of multiple phytoplasmas in the insect vector. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 293–308). UK: MPG Books Group.

    Google Scholar 

  • Bosco, D., & Tedeschi, R. (2013). Insect vector transmission assays. In M. Dickinson & J. Hodgetts (Eds.), Phytoplasma: Methods and protocols, methods in molecular biology (pp. 73–85). New York: Humana Press.

    Chapter  Google Scholar 

  • Casati, P., Quaglino, F., Abou-Jawdah, Y., Picciau, L., Cominetti, A., Tedeschi, R., et al. (2016). Wild plants could play a role in the spread of diseases associated with phytoplasmas of Pigeon pea witches’broom group (16SrIX). Journal of Plant Pathology, 98(1), 71–81.

    Google Scholar 

  • D’Urso, V. (1995). Homoptera Auchenorrhyncha. In A. Minelli, S. Ruffo, & S. La Porta (Eds.), Checklist delle specie della Fauna Italiana 42 (pp. 1–35). Italy: Calderini.

    Google Scholar 

  • D’Urso, V. & Alma, A. (2006). Insecta Homoptera Auchenorrhyncha (partim). In S. Ruffo & F. Stoch (Ed.), Checklist and distribution of the Italian fauna, Memorie del Museo Civico di Storia Naturale di Verona, 2. Serie, Sezione Scienze della Vita 17 with data on CD-ROM (pp. 155-157).

  • Dakhil, H., Hammad, E. A., El-Mohtar, C., & Abou-Jawdah, Y. (2011). Survey of leafhopper species in almond orchards infected with almond witches’-broom phytoplasma in Lebanon. Journal of Insect Science, 11, 1–12.

    Article  Google Scholar 

  • Danet, J. L., Balakishiyeva, G., Cimerman, A., Sauvion, N., Marie-Jeanne, V., Labonne, G., et al. (2011). Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology, 157, 438–450.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R. E., & Sinclair, W. A. (1998). Phytoplasma identity and disease etiology. Phytopathology, 88, 1372–1376.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R. E., Dally, E., Zhao, Y., Lee, I. M., Jomantiene, R., Detweiler, A. J., et al. (2010). First Report of a New Subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-Related) Phytoplasma Associated with Juniper Witches Broom Disease in Oregon, USA. Plant Pathology, 59, 1161.

    Article  Google Scholar 

  • Deng, S., & Hiruki, C. (1991). Genetic relatedness between two nonculturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology, 81, 1475–9.

    Article  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  • D'Urso, V. (1995). Contributo alla conoscenza della distribuzione in Italia di alcune specie di Auchenorrinchi (Insecta Rhynchota: Homoptera). Naturalista Siciliano, Palermo, 19(1-2), 99–104.

    Google Scholar 

  • Hermoso De Mendoza, A., Del Estal, P., Alcazar, M. D., Pérez-Otero, R., & Mansilla, P. (2012). Diferenciación entre Scaphoideus titanus Ball, vector de la Flavescencia Dorada de la vid, y una especie próxima, Osbornellus horvathi (Matsumura), recientemente encontrada en España (Hemiptera, Cicadellidae). Boletín de sanidad vegetal. Plagas, 38, 349–352.

    Google Scholar 

  • Hoch, H. (2004). Hemiptera: Fulgomorpha, Cicadomorpha. In H. Hoch (Ed.), Fauna Europaea version 1.1, http://www.faunaeur.org (viewed February 26, 2007).

  • Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.

    Article  CAS  PubMed  Google Scholar 

  • IRPCM. (2004). ‘Candidatus phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonise plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54, 1243–1255.

    Article  Google Scholar 

  • Kenyon, L., Harrison, N. A., Ashburner, G. R., Boa, E. R., & Richardson, P. A. (1998). Detection of a pigeon pea witches’-broom-related phytoplasma in trees of Gliricidia sepium affected by little-leaf disease in Central America. Plant Pathology, 47, 671–680.

    Article  Google Scholar 

  • Khan, A. J., Al-Subhi, A. M., Calari, A., Al-Saady, N. A., & Bertaccini, A. (2007). A new phytoplasma associated with witches’ broom of Cassia italica in Oman. Bulletin of Insectology, 60, 269–270.

    Google Scholar 

  • Lee, I. M., Hammond, R. W., Davis, R. E., & Gundersen, D. E. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology, 83, 834–842.

    Article  CAS  Google Scholar 

  • Lee, I. M., Gundersen, D. E., Hammond, R. W., & Davis, R. E. (1994). Use of Mycoplasmalike Organism (MLO) Group-Specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology, 84, 559–566.

    Article  CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998a). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48(4), 1153–1169.

    Article  CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., & Bertaccini, A. (1998b). Phytoplasma: ecology and genomic diversity. Phytopathology, 88(12), 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. M., Davis, R., & Gundersen-Rindal, D. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Reviews of Microbiology, 54, 221–255.

    Article  CAS  Google Scholar 

  • Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C., & Seemüller, E. (2004). ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. M., Bottner-Parker, K. D., Zhao, Y., Davis, R. E., & Harrison, N. A. (2010). Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology, 60, 2887–2897.

    Article  PubMed  Google Scholar 

  • Marcone, C. (2014). Molecular biology and pathogenicity of phytoplasmas. Annals of Applied Biology, 165, 199–221.

    Article  CAS  Google Scholar 

  • Marcone, C., Ragozzino, A., Camele, I., Rana, G. L., & Seemüller, E. (2001). Updating and extending genetic characterization and classification of phytoplasmas from wild and cultivated plants in Southern Italy. Journal of Plant Pathology, 83, 133–138.

    CAS  Google Scholar 

  • Marzachì, C., Verati, F., & Bosco, D. (1998). Direct PCR detection of phytoplasmas in experimentally infected insects. Annals of Applied Biology, 133, 45–54.

    Article  Google Scholar 

  • Marzachì, C., Milne, R. G., Bosco, D., & Pandalai, S. G. (2004). Phytoplasma–plant–vector relationships. Recent Research Developments in Plant Pathology, 3, 211–241.

    Google Scholar 

  • Matsumura, S. (1908). Neue Cicadinen aus Europa und Mittelmeergebiet. Journal of the College of Science, Imperial University of Tokyo, 23(6), 1–46.

    Google Scholar 

  • Molino Lova, M., Quaglino, F., Abou-Jawdah, Y., Choueiri, E., Sobh, H., Casati, P., et al. (2011). Identification of New 16SrIX Subgroups, -F and -G, among ‘Candidatus Phytoplasma phoenicium’ Strains Infecting Almond, Peach and Nectarine in Lebanon. Phytopathologia Mediterranea, 50, 273–282.

    Google Scholar 

  • Ossiannilsson, F. (1978). The Auchenorrhynca (Homoptera) of Fennoscandia and Denmark. Part 1: Introdution, infraorder Fulgoromorpha. Fauna Entomologica Scandinavica, 7(1), 1–222.

    Google Scholar 

  • Ossiannilsson, F. (1981). The Auchenorrhynca (Homoptera) of Fennoscandia and Denmark. Part 2: the families Cicadidae, Cercopidae, Membracidae and Cicadellidae (exl. Deltocephalinae). Fauna Entomologica Scandinavica, 7(2), 223–593.

    Google Scholar 

  • Ossiannilsson, F. (1983). The Auchenorrhynca (Homoptera) of Fennoscandia and Denmark. Part 3: the family Cicadellidae: Deltocephalinae, Catalogue. Literature and Index. Fauna Entomologica Scandinavica, 7(3), 594–978.

    Google Scholar 

  • Quaglino, F., Kube, M., Jawhari, M., Abou-Jawdah, Y., Siewert, C., Choueiri, E., et al. (2015). ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology, 15, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashidi, M., D’Amelio, R., Galetto, L., Marzachì, C., & Bosco, D. (2014). Interactive transmission of two phytoplasmas by the vector insect. Annals of Applied Biology, 165, 404–413.

    Article  Google Scholar 

  • Rizza, S., D’Urso, V., Marzachì, C., & Tessitori, M. (2013). Osbornellus horvathi potential vector of 16SrIX phytoplasmas. Petria, 23(1), 91–94.

    Google Scholar 

  • Salehi, M., Izadpanah, K., & Siampour, M. (2007). Characterization of a phytoplasma associated with cabbage yellows in Iran. Plant Disease, 91, 625–630.

    Article  CAS  Google Scholar 

  • Saracco, P., Bosco, D., Veratti, F., & Marzachì, C. (2006). Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrisanthemum carinatum (Schousboe) following inoculation with its insects vector. Physiological and Molecular Plant Pathology, 67, 212–219.

    Article  Google Scholar 

  • Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M. (1998). Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 80, 3–26.

    Google Scholar 

  • Spallino, R. E., Rizza, S., Marzachì, C., & Tessitori, M. (2013). Spartium witches’broom in Sicily. Petria, 23(1), 41–44.

    Google Scholar 

  • Tedeschi, R., Picciau, L., Quaglino, F., Abou-Jawdah, Y., Molino Lova, M., Jawhari, M., et al. (2015). A cixiid survey for natural potential vectors of ‘Candidatus Phytoplasma phoenicium’ in Lebanon and preliminary transmission trials. Annals of Applied Biology, 166, 372–88.

    Article  CAS  Google Scholar 

  • Verdin, E., Salar, P., Danet, J. L., Choueiri, E., Jreijiri, F., El Zammar, S., et al. (2003). ‘Candidatus Phytoplasma phoenicium’, a new phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. International Journal of Systematic and Evolutionary Microbiology, 53, 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., Davis, R. E., Lee, I. M., & ZHAO, Y. (2007). Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.

    Article  CAS  PubMed  Google Scholar 

  • Zahniser, J. N., & Dietrich, C. H. (2010). Phylogeny of the leafhopper subfamily Deltocephalinae (Hemiptera: Cicadellidae) based on molecular and morphological data with a revised family-group classification. Systematic Entomology, 35, 489–511.

    Article  Google Scholar 

  • Zhao, Y., Wei, W., Lee, I. M., Shao, J., Suo, X., & Davis, R. E. (2009). Construction of an interactive online phytoplasma classification tool, iPhy Classifier, and its application in analysis of the peach X-disease phytoplasmas group (16SrIII). International Journal of Sistematic and Evolutionary Microbiology, 59, 2582–2593.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Regione Sicilia (Assessorato Regionale delle Risorse Agricole e Alimentari, Servizio 5 Fitosanitario Regionale), within the project ‘Individuazione di focolai del fitoplasma (16SrRNA V) agente causale della Flavescenza dorata della vite’. We would like to thank Prof. Domenico Bosco (DISAFA, University of Turin) for his critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Tessitori.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12600-016-0555-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serena, R., Antonella, P., Vera, D. et al. Transmission of ‘Candidatus Phytoplasma asteris’ (16SrI) by Osbornellus horvathi (Matsumura 1908) co-infected with “Ca. Phytoplasma phoenicium” (16SrIX). Phytoparasitica 44, 491–500 (2016). https://doi.org/10.1007/s12600-016-0545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0545-y

Keywords

Navigation