Skip to main content
Log in

Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Castor (Ricinus communis L.) is an important oilseed crop providing raw materials for many industries. Its cultivation is seriously affected by the wilt disease caused by Fusarium oxysporum f. sp. ricini. In India, no cultivar could be released for cultivation without wilt resistance. Breeding for wilt resistance is hampered due to the limitation on number of genotypes that can be screened in a traditional ‘sick plot (field) method’. In the pursuit of establishing a high throughput screening method, we evaluated four different methods of artificial inoculation namely seed soaking, soil drenching, root dip and sick pot in glasshouse condition for their efficiency using a panel of eight genotypes with known disease reaction. The results showed that ‘sick pot method’ was the most ideal for accurate identification of resistance or susceptibility in plants in a short time with relative ease. In order to further validate the results, a large set of 132 castor inbred lines were evaluated in sick pot. Based on days-to-death data of the inbred lines, a scoring system was developed to suitably characterize the degree of resistance. Screening of the same set of inbred lines in the sick field produced similar results but moderate and highly resistant genotypes could not be differentiated suggesting the advantage of sick pot method over field screening. The screening method established and the set of resistant or susceptible inbred lines identified in this study could be of immense use in basic research concerning host-pathogen interactions, molecular genetics and breeding applications in castor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd-Elsalam, K. A., Omar, M. R., Asran-Amal, A., Mansour, M. T., & Aly, A. H. (2014). Evaluation of a cotton germplasm collection against Fusarium wilt race 3 isolates from Egypt. Tropical Plant Pathology, 39, 095–103.

    Article  Google Scholar 

  • Ahmad, A. A., Iqbal, S. M., Ayub, N., Ahmad, Y., & Akram, A. (2010). Identification of resistance sources in chickpea against Fusarium wilts. Pakistan Journal of Botany, 42, 417–426.

    Google Scholar 

  • Anjani, K., & Raoof, M. A. (2014). Analysis of mode of inheritance of Fusarium wilt resistance in castor (Ricinus communis L.). Plant Breeding, 133, 101–107.

    Article  CAS  Google Scholar 

  • Anjani, K., Raoof, M. A., Reddy, A. V., & Rao, C. H. (2003). Sources of resistance to major castor (Ricinus communis L.) diseases. Plant Genetic Resources Newsletter, 137, 46–48.

    Google Scholar 

  • Anjani, K., Raoof, M. A., & Desai, A. G. (2014). Evaluation of world castor (Ricinus communis L.) germplasm for resistance to Fusarium wilt (Fusarium oxysporum f. sp. ricini). European Journal of Plant Pathology, 139, 567–578.

    Article  CAS  Google Scholar 

  • Berman, P., Nizri, S., & Wiesman, Z. (2011). Castor oil biodiesel and its blends as alternative fuel. Biomass and Bioenergy, 35, 2861–2866.

    Article  CAS  Google Scholar 

  • Burke, D. W. (1965). The near immobility of Fusarium solani f. sp. phaseoli in natural soils. Phytopathology, 55, 1188–1190.

    Google Scholar 

  • Correl, J. C. (1991). The relationship between formae specialis, races, and vegetative compatibility group in Fusarium oxysporum. Phytopathology, 81, 1061–1064.

    Google Scholar 

  • Dange, S. R. S., Desai, A. G., & Patel, S. I. (2006). Wilt of castor and its management – a review. Agricultural Reviews, 272, 147–151.

    Google Scholar 

  • Desai, A. G., & Dange, S. R. S. (2003). Standardization of root dip inoculation technique for screening of resistance to wilt of castor. Journal of Mycology and Plant Pathology, 33, 73–75.

    Google Scholar 

  • Desai, A. G., Dange, S. R. S., & Pathak, H. C. (2001). Genetics of resistance to wilt in castor caused by Fusarium oxysporum f.sp. ricini. Nanda and Prasad. Journal of Mycology and Plant Pathology, 31(3), 322–326.

    Google Scholar 

  • Eynck, C., Koopmann, B., & Tiedemann, A. V. (2009). Identification of Brassica accessions with enhanced resistance to Verticillium longisporum under controlled and field conditions. Journal of Plant Diseases and Protection, 116, 63–72.

    Article  Google Scholar 

  • Gourishankar, V., Rao, P. V. R., & Reddy, A. V. (2010). Inheritance of certain morphological characters and Fusarium wilt resistance in Castor Ricinus communis L. SABRAO Journal of Breeding and Genetics, 42(2), 56–63.

    Google Scholar 

  • Gracia-Garza, J. A., & Fravel, D. R. (1998). Effect of relative humidity on sporulation of Fusarium oxysporum in various formulations and effect of water on spore movement through soil. Phytopathology, 88, 544–549.

    Article  CAS  PubMed  Google Scholar 

  • Hillocks, R. J. (1984). Production of cotton varieties with resistance to Fusarium wilt with special reference to Tanzania. Tropical Pest Management, 30, 234–246.

    Article  Google Scholar 

  • Lavanya, C., Raoof, M. A., & Prasad, M. S. L. (2011). Genetics of resistance to Fusarium wilt in castor by Fusarium oxysporum f.sp. ricini. Indian Journal of Phytopathology, 64, 151–153.

    Google Scholar 

  • Leath, S., & Carroll, R. B. (1982). Screening for resistance to Fusarium oxysporum in soybean. Plant Disease, 66, 1140–1143.

    Article  Google Scholar 

  • Lee, W. J., Jang, K. S., Choi, Y. H., Kim, H. T., Kim, J.-C., & Choi, G. J. (2015). Development of an efficient simple mass-screening method for resistant melon to Fusarium oxysporum f. sp. melonis. Research in Plant Diseases, 21(3), 201–207.

    Article  Google Scholar 

  • Lopez-Lavallea, L. A. B., Potter, N., & Brubaker, C. L. (2012). Development of a rapid, accurate glasshouse bioassay for assessing fusarium wilt disease responses in cultivated Gossypium species. Plant Pathology, 61, 1112–1120.

    Article  Google Scholar 

  • Mayee, C. D., & Datar, V. V. (1986). Phytopathometry (Technical Bulletin 1, 218). Parbhani, India: Marathwada Agricultural University.

    Google Scholar 

  • Mohammadi, N., Puralibaba, H., Mohammadi, E. G., Ahari, A. B., & Sardrood, B. P. (2012). Advanced lentil lines screened for resistance to Fusarium oxysporum f. sp. lentis under greenhouse and field conditions. Phytoparasitica, 40, 69–76.

    Article  CAS  Google Scholar 

  • Naik, M. K. (1994). Seed borne nature of Fusarium in castor. Indian Journal of Mycology and Plant Pathology, 24, 62–63.

    Google Scholar 

  • Nakasone, K., Peterson, S. W., & Foster, M. S. (2004). Preservation and distribution of fungal cultures. In G. M. Mueller, G. F. Bills, & M. S. Foster (Eds.), Biodiversity of fungi: inventory and monitoring methods (pp. 37–47). London: Elsevier.

    Chapter  Google Scholar 

  • Nanda, S., & Prasad, N. (1974). Wilt of castor a new record. Indian Journal of Mycology and Plant Pathology, 4, 103–105.

    Google Scholar 

  • Nene, Y. L., & Haware, M. P. (1980). Screening chickpea for resistance to wilt. Plant Disease, 64, 379–380.

    Article  Google Scholar 

  • Nene, Y. L., & Kannaiyan, J. (1982). Screening pigeonpea for resistance to Fusarium wilt. Plant Disease, 66, 306–307.

    Article  Google Scholar 

  • Ogunniyi, D. S. (2006). Castor oil: a vital industrial raw material. Bioresource Technology, 97, 1086–1091.

    Article  CAS  PubMed  Google Scholar 

  • Okiror, M. A. (1998). Screening techniques for Fusarium wilt of pigeonpea. African Crop Science Journal, 6, 345–350.

    Article  Google Scholar 

  • Patel, P. B., & Pathak, H. C. (2011). Genetics of resistance to wilt in castor caused by Fusarium oxysporum f. sp. ricini Nanda and Prasad. Agricultural Science Digest, 31, 30–34.

    Google Scholar 

  • Podkuichenko, G. V. (1989). Donors of resistance to Fusarium in castor oil plant. Instituta Maslichnykh Kullar, 1, 24–26.

    Google Scholar 

  • Prasad, N., & Bhatnagar, A. (1981). Evaluation of resistant varieties of castor to wilt pathogen. Journal of Mycology and Plant Pathology, 11, 137–138.

    Google Scholar 

  • Prasad, M. S. L., Sujatha, M., & Raoof, M. A. (2008). Morphological, pathogenic and genetic variability in castor wilt isolates. Indian Phytopathology, 61, 18–27.

    CAS  Google Scholar 

  • Purwati, R. D., Hidayah, N., Sudjindro, & Sudarsono. (2008). Inoculation methods and conidial densities of Fusarium oxysporum f.sp. cubense in Abaca. Hayati Journal of Biosciences, 15, 1–7.

    Google Scholar 

  • Pushpawathi, B., Sarwar, H. A. K., Raoof, M. A., & Babu, R. R. (1998). Management of wilt disease in castor. Indian Journal of Plant Protection, 26(2), 177–180.

    Google Scholar 

  • Rao, C. H., Raoof, M. A., & Lavanya, C. (2005). Study on segregation patterns and linkages between morphological characters and wilt resistance in castor (Ricinus communis). Journal of Oilseeds Research, 22(1), 114–118.

    Google Scholar 

  • Raoof, M. A., & Rao, N. T. G. (1996). A simple screening technique for early detection of resistance to castor wilt. Journal of Indian Phytopathology, 49, 389–392.

    Google Scholar 

  • Reddy, A. V. V., Janila, P., Rao, P. V. R., Ahammed, S. K., Reddy, N. R., Shankar, V. G., & Singh, T. V. K. (2010). Molecular tagging of Fusarium wilt resistance gene(s) in castor, Ricinus communis L. Journal of Oilseeds Research, 27, 92–95.

    Google Scholar 

  • Reddy, R. N., Sujatha, M., Reddy, A. V., & Reddy, A. P. (2011). Inheritance and molecular mapping of wilt resistance gene (s) in castor (Ricinus communis L.). International Journal of Plant Breeding, 5, 84–87.

    Google Scholar 

  • Ruddick, S. M., & Williams, S. T. (1972). Studies on the ecology of actinomycetes in soil V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biology and Biochemistry, 4, 93–103.

    Article  Google Scholar 

  • Sarada, C., & Anjani, K. (2013). Establishment of castor core collection utilizing self-organizing mapping (SOM) networks. Journal of Indian Society of Agricultural Statistics, 67, 71–78.

    Google Scholar 

  • Sastry, R. K., & Chattopadhyay, C. (2003). Development of Fusarium wilt resistant genotypes in safflower (Carthamus tinctorius). European Journal of Plant Pathology, 109, 147–151.

    Article  Google Scholar 

  • Senthilvel, S., Shaik, M., Anjani, K., Shaw, R. K., Kumari, P., Sarada, C., & Kiran, B. U. (2016). Genetic variability and population structure in a collection of inbred lines derived from a core germplasm of castor. Journal of Plant Biochemistry and Biotechnology. doi:10.1007/s13562-016-0356-8.

    Google Scholar 

  • Stevenson, P. C., Padgham, D. E., & Haware, M. P. (1995). Root exudates associated with the resistance of fourchickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f. sp. ciceri. Plant Pathology, 44, 686–694.

    Article  Google Scholar 

  • Sudhakar, R., Ahammed, S. K., Srinivas, T., & Reddy, A. V. (2010). Evaluation of advanced breeding material of castor (Ricinus communis L.) for Fusarium wilt resistance. Journal of Oilseeds Research, 27, 290–292.

    Google Scholar 

  • Sviridov, A. A. (1988). Inheritance of resistance to Fusarium in Castorbean. Genetika, 24, 908–913.

    Google Scholar 

  • Trapero-Casas, A., & Jimenez-Diaz, R. M. (1985). Fungal wilt and root rot diseases of chickpea in Southern Spain. Phytopathology, 75, 1146–1151.

    Article  Google Scholar 

  • Vavilov, N. I. (1951). The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, 13, 1–364.

    Google Scholar 

  • Wallace, H. R. (1978). Dispersal in time and space: soil pathogens. In J. G. Horsfall & E. B. Cowling (Eds.), Plant disease: An advanced treatise Vol. II How disease develops in populations (pp. 181–202). New York: Academic.

    Chapter  Google Scholar 

  • Wang, B., Dale, M. L., & Kochman, J. K. (1999). Studies on a pathogenicity assay for screening cotton germplasms for resistance to Fusarium oxysporum f.sp. vasinfectum in the glasshouse. Australian Journal of Experimental Agriculture, 39, 967–974.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank J. Ilesh and Shaik Shamshuddin for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senthilvel.

Ethics declarations

Funding

This study was funded by Indian Council of Agricultural Research, New Delhi.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, R.K., Shaik, M., Mir, Z.A. et al. Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease. Phytoparasitica 44, 539–548 (2016). https://doi.org/10.1007/s12600-016-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0535-0

Keywords

Navigation