Skip to main content
Log in

Identification and evaluation of cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata (Diptera: Tephritidae)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The aim of the present study was to identify the cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata, and evaluate their potential to attract adults of B. zonata. Based on culture-dependent characterization methods and 16S rRNA gene sequence analysis, bacteria were identified as members of family Enterobacteriaceae (BZM1, Klebsiella oxytoca), Microbacteriacea (BZM2, Microbacterium spp.) and Nocardiaceae (BZM4, Rhodococcus spp.). Molecular phylogeny placed Klebsiella oxytoca within gram negative γ-proteobacteria whereas, Microbacterium spp. and Rhodococcus spp. were clustered under gram positive Actinobacteria group in family Microbacteriacea and Nocardiaceae, respectively. 16S rRNA gene sequence comparison with the available NCBI database sequences further confirmed the characterizations of bacterial symbionts. Population of these bacterial species increased significantly up to the 11th day after emergence of adults and thereafter it remains constant. Among 3 bacterial symbionts, metabolites produced from K. oxytoca had the highest attraction to the B. zonata adult females over metabolites produced from other bacteria and their combinations in field bioassay. The B. zonata adult male flies attracted to metabolites produced from each bacterial symbionts alone and their combinations were less in number with comparison to the B. zonata adult females. The present study provides the first description of the attractancy potential of metabolites produced by gut microbial community of B. zonata in open field condition. This study results may prompt the development of a female-targeted population control strategy for this fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  • Behar, A., Yuval, B., & Jurkevitch, E. (2005). Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly, Ceratitis capitata. Molecular Ecology, 14, 2637–2643.

    Article  CAS  PubMed  Google Scholar 

  • Behar, A., Jurkevitch, E., & Yuval, B. (2008). Bringing back the fruit into fruit fly-bacteria interactions. Molecular Ecology, 17, 1375–1386.

    Article  CAS  PubMed  Google Scholar 

  • Behar, A., Ben-Yosef, M., Lauzon, C. R., Yuval, B., & Jurkevich, E. (2009). Structure and function of the bacterial community associated with the Mediterranean fruit fly. In K. Bourtzis & T. Miller (Eds.), Insect symbiosis (pp. 251–271). Boca Raton: CRC.

    Google Scholar 

  • Belcari, A., Sacchetti, P., Marchi, G., & Surico, G. (2003). The olive fly and associated bacteria. Informatics Fitopatologia, 53, 55–59.

    Google Scholar 

  • Bergey, D. H., Holt, J. G., & Krieg, N. R. (2001). Bergey’s manual of systematic bacteriology. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Bousch, G. M., & Matsumara, F. (1967). Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. Journal of Economic Entomology, 69, 918–920.

    Article  Google Scholar 

  • Brand, J. M., Bracke, J. W., Markovetz, A. J., Wood, D. L., & Browne, L. E. (1975). Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature, 254, 136–137.

    Article  CAS  PubMed  Google Scholar 

  • Brauman, A., Dore, J., Eggleton, P., Bignell, D., Breznak, J. A., & Kane, M. D. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology and Ecology, 35, 27–36.

    Article  CAS  Google Scholar 

  • Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  CAS  Google Scholar 

  • Brune, A. (2003). Symbionts aiding digestion. In V. H. Resh & R. T. Cardé (Eds.), Encyclopedia of insects (pp. 1102–1107). Academic Press.

  • Buchner, P. (1965). Endosymbiosis of animals with plant microorganisms. New York: Wiley.

    Google Scholar 

  • Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., & Girolami, V. (2005). ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic Evolutionary Microbiology, 55, 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, J. S., Kumari, A., Das, B., Maurya, S., & Kumar, S. (2012). Diversity and population dynamic of fruit flies species in methyl eugenol based parapheromone traps in Jharkhand region of India. The Ecoscan, 1, 57–60.

    Google Scholar 

  • Choudhary, J. S., Naaz, N., Prabhakar, C. S., Srinivasa Rao, M., & Das, B. (2015). The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing. Gene, 569, 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., Bandi, C., & Daffonchio, D. (2010). Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology, 76, 6963–6970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale, C., & Moran, N. A. (2006). Molecular interactions between bacterial symbionts and their hosts. Cell, 126, 453–465.

    Article  CAS  PubMed  Google Scholar 

  • Daser, U., & Brandl, R. (1992). Microbial gut floras of 8 species of Tephritids. Biological Journal of the Linnean Society, 45, 155–165.

    Article  Google Scholar 

  • Dillon, R., & Charnley, K. (2002). Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Research in Microbiology, 153, 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, R. J., & Dillon, V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology, 49, 71–92.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, A. (1998). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17–37.

    Article  CAS  PubMed  Google Scholar 

  • Drew, R. A. I., & Lloyd, A. C. (1987). Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Annals of the Entomological Society of America, 80, 629–636.

    Article  Google Scholar 

  • Drew, R. A. I., & Raghu, S. (2002). The fruit fly fauna (Diptera: Tephritidae: Dacinae) of the rainforest habitat of the Western Ghats, India. Raffles Bulletin of Zoology, 50(2), 327–352.

    Google Scholar 

  • Duyck, P. F., Sterlin, J. F., & Quilici, S. (2004). Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research, 94, 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Eutick, M. L., O’Brien, R. W., & Slaytor, M. (1978). Bacteria from the gut of Australian termites. Applied and Environmental Microbiology, 35(5), 823–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fukatsu, T., & Hosokawa, T. (2002). Capsule transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Applied and Environmental Microbiology, 68(1), 389–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hee, A. K. W., & Tan, K. H. (2004). Male sex pheromonal components derived from methyl eugenol in the haemolymph of fruit fly Bactrocera papayae. Journal of Chemical Ecology, 30, 2127–2138.

    Article  CAS  PubMed  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (2000). Bergey's manual of determinative bacteriology (pp. 175–533). New York: LIPPNCOTT Williams and Wilkins.

    Google Scholar 

  • Hongoh, Y., Deevong, P., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Vongkaluang, C., Noparatnaraporn, N., & Kudo, T. (2005). Intra and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environmental Microbiology, 71(11), 6590–6599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, E. B., & Nishijima, K. A. (1990). Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Environmental Entomology, 19, 1726–1731.

    Article  Google Scholar 

  • Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81, 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, V. C. (1993). Indian fruit flies (Insecta: Diptera: Tephritidae) (p. 228). New York: International Sciences Publisher.

    Google Scholar 

  • Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., Chouaia, B., et al. (2009). Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Applied and Environmental Microbiology, 75, 3281–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzina, L. V., Peloquin, J. J., Vacek, D. C., & Miller, T. A. (2001). Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Current Microbiology, 42, 290–294.

    CAS  PubMed  Google Scholar 

  • Laffineur, K., Avesani, V., Cornu, G., Charlier, J., Janssens, M., Wauters, G., & Delmée, M. (2003). Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. Journal of Clinical Microbiology, 41, 2242–2246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauzon, C. R. (2003). Symbiotic relationships of Tephritids. In K. Bourtzis & T. A. Miller (Eds.), Insect symbiosis (pp. 115–129). Boca Raton: CRC.

    Chapter  Google Scholar 

  • Lauzon, C. R., Sjogren, R. E., Wright, S. E., & Prokopy, R. J. (1998). Attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to odor of bacteria: apparent confinement to specialized members of Enterobacteriaceae. Environmental Entomology, 27, 853–857.

    Article  Google Scholar 

  • Lauzon, C. R., Sjogren, R. E., & Prokopy, R. J. (2000). Enzymatic capabilities of bacteria associated with apple maggot flies, a postulated role in attraction. Journal of Chemical Ecology, 26, 953–967.

    Article  CAS  Google Scholar 

  • Lloyd, A. C., Drew, R. A. I., Teakle, D. S., & Hayward, A. C. (1986). Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruits in Queensland. Australian Journal of Biological Sciences, 39, 361–368.

    Google Scholar 

  • Madhura, H. S., & Verghese, A. (2004). A guide to identification of some common fruit flies (Bactrocera spp.) (Diptera: Tephritidae: Dacinae). Pest Management in Horticultural Ecosystem, 10(1), 87–96.

    Google Scholar 

  • Marchini, D., Rosetto, M., Dallai, R., & Marri, L. (2002). Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Current Microbiology, 44, 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, A. J., Robacker, D. C., Garcia, J. A., & Esau, K. L. (1994). Laboratory and field olfactory attraction of the Mexican fruit fly (Diptera: Tephritidae) to metabolites of bacterial species. Florida Entomology, 77, 117–126.

    Article  Google Scholar 

  • Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E., & Ochman, H. (2005). The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proceedings of the National Academy of Sciences, USA, 102, 16919–16926.

    Article  CAS  Google Scholar 

  • Müller, S., Eva, G. S., Elke, G., & Süssmuth, R. D. (2015). Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Natural Product Reports, 32, 765–778.

    Article  PubMed  Google Scholar 

  • Muscatello, G., Leadon, D. P., Klayt, M., et al. (2007). Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Veterinary Journal, 39, 470–478.

    Article  CAS  PubMed  Google Scholar 

  • `Nakabachi, A., & Ishikawa, H. (1999). Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. Journal of Insect Physiology, 45, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Ngugi, D. K., Tsanuo, M. K., & Boga, H. I. (2005). Rhodococcus opacus strain RW, a resorcinol degrading bacterium from the gut of Macrotermes michaelseni. African Journal of Biotechnology, 4(7), 639–645.

    Article  CAS  Google Scholar 

  • Ohkuma, M. (2003). Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y., Kim, Y., Tunaz, H., & Stanley, D. W. (2004). An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworms, Manduca sexta. Journal of Invertebrate Pathology, 86, 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Petri, L. (1909). Ricerche Sopra i Batteri Intestinali della Mosca Olearia. Roma: Memorie della Regia Stazione di Patologia Vegetale di Roma.

    Google Scholar 

  • Prabhakar, C. S., Sood, P., & Mehta, P. K. (2008). Protein hydrolyzation and pesticide tolerance by gut bacteria of Bactrocera tau (Walker). Pest Management and Economic Zoology, 16, 123–129.

    Google Scholar 

  • Prabhakar, C. S., Sood, P., Kapoor, V., Kanwar, S. S., Mehta, P. K., & Sharma, P. N. (2009). Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). Journal of General and Applied Microbiology, 55, 213–220.

    Article  Google Scholar 

  • Prabhakar, C. S., Sood, P., & Mehta, P. K. (2012). Pictorial keys for predominant Bactrocera and Dacus fruit flies (Diptera: Tephritidae) of north western Himalaya. Arthropods, 1(3), 101–111.

    Google Scholar 

  • Prabhakar, C. S., Sood, P., Kanwar, S. S., Sharma, P. N., Kumar, A., & Mehta, P. K. (2013). Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker). Phytoparasitica, 41, 193–201.

    Article  Google Scholar 

  • Raghu, S., Clarke, A. R., & Bradley, J. (2002). Microbial mediation of fruit fly-host plant interactions: is the host plant the “centre of activity”? Oikos, 97, 319–328.

    Article  Google Scholar 

  • Reddy, K., Sharma, K., & Singh, S. (2014). Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera zonata (Saunders). Phytoparasitica. doi:10.1007/s12600-014-0410-9.

    Google Scholar 

  • Robacker, D. C. (2007). Chemical ecology of bacteria relationships with fruit flies, Integrated Protection of Olive Crops. IOBC/WPRS Bulletin, 30, 9–22.

    Google Scholar 

  • Robacker, D. C., & Garcia, J. A. (1993). Effects of age, time of day, feeding history, and gamma irradiation on attraction of Mexican fruit flies (Diptera: Tephritidae), to bacterial odor in laboratory experiments. Environmental Entomology, 22, 1367–1374.

    Article  Google Scholar 

  • Sacchetti, P., Landini, S., Granchietti, A., Cama, A., Rosi, M. C., & Belcari, A. (2007). Attractiveness to the olive fly of Pseudomonas putida isolated from the foregut of Bactrocera oleae. Integrated Protection of Olive Crops. IOBC/WPRS Bulletin, 30, 37–42.

    Google Scholar 

  • Sacchetti, P., Granchietti, A., Landini, S., Viti, L., Giovannetti, L., & Belcari, A. (2008). Relationships between the olive fly and bacteria. Journal Applied Entomology, 132, 682–689.

    Article  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Schloss, P. D., & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71, 1501–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Hempel, P. (1998). Parasites in social insects. Princeton: Princeton University Press.

    Google Scholar 

  • Schmitt-Wagner, D., Friedrich, M. W., Wagner, B., & Brune, A. (2003). Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil feeding termites (Cubitermes spp.). Applied and Environmental Microbiology, 69, 6007–6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Z., Wang, L., & Zhang, H. (2012). Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). International Journal of Molecular Sciences, 13, 6266–6278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood, P., & Nath, A. (2002). Bacteria associated with Bactrocera sp. (Diptera: Tephritidae) – isolation and identification. Pest Management and Economic Zoology, 10, 1–9.

    Google Scholar 

  • Sood, P., Prabhakar, C. S., & Mehta, P. K. (2010). Eco-friendly management of fruit flies through their gut bacteria. Journal of Insect Science, 23, 275–283.

    Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaochan, N., & Chinajariyawong, A. (2011). Attraction of Bactrocera cucurbitae and B. papayae (Diptera: Tephritidae) to the odor of the bacterium Enterobacter cloacae. Philippines Agricultural Scientist, 94, 1–6.

    Google Scholar 

  • Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S., & Chinajariyawong, A. (2010). Alimentary tract bacteria isolated and identified with API- 20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. Journal of Insect Science, 10, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth, E., Kovacs, G., Schumann, P., Kovacs, A. L., & Steiner, U. (2001). Shineria larvae gen. nov. isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). International Journal of Systematic Evolution and Microbiology, 51, 401–407.

    Article  CAS  Google Scholar 

  • Vilmos, P., & Kurucz, E. (1998). Insect immunity: evolutionary roots of the mammalian innate immune system. Immunology Letters, 62, 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Jin, L., & Zhang, H. (2011). Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology, 110, 1390–1401.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Jin, L., Peng, T., Zhang, H., Chen, Q., & Hua, Y. (2013). Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential. Pest Management Science. doi:10.1002/ps.3528.

    Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White, I. M., & Elson-Harris, M. (1992). Fruit flies of economic significance: Their identification and bionomics. Wallingford: International Institute of Entomology: CAB International.

    Google Scholar 

  • Yassin, A. F. (2005). Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. International Journal of Systematic Evolution and Microbiology, 55(4), 1575–1579.

    Article  CAS  Google Scholar 

  • Zinder, D. E., & Dworkin, M. (2000). Morphological and physiological diversity. In M. Dworkin et al. (Eds.), The prokaryotes. New York: Springer Verlag.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Agriculture, Government of India through the National Initiative on Climate Resilient Agriculture (NICRA) project under the Indian Council of Agricultural Research (ICAR) (ICAR-RCER/RC R/E.F./2011/29). We are grateful to Dr. B.P. Bhatt (Director of institute) for giving valuable suggestions and providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaipal S. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naaz, N., Choudhary, J.S., Prabhakar, C.S. et al. Identification and evaluation of cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Phytoparasitica 44, 165–176 (2016). https://doi.org/10.1007/s12600-016-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0518-1

Keywords

Navigation