, Volume 44, Issue 1, pp 139–149 | Cite as

Row spacing impacts the critical period for weed control in cotton (Gossypium hirsutum)

  • Nihat Tursun
  • Avishek Datta
  • Selvi Budak
  • Zekeriya Kantarci
  • Stevan Z. Knezevic


The knowledge on the critical crop-weed competition period is important for designing an efficient weed management program. Field studies were conducted in 2012 and 2013 at the Agricultural Research Institute, Kahramanmaras, Turkey to determine the effects of three row spacing (50, 70 and 90 cm) on the critical period for weed control (CPWC) in cotton. A four parameter logistic equation was fit to data relating relative crop yield to both increasing duration of weed interference and length of weed-free period. The relative yield of cotton was influenced by the duration of weed-infested or weed-free period, regardless of row spacing. In cotton grown at 50 cm row spacing, the CPWC ranged from 117–526 growing degree days (GDD) (V2–V11 growth stages) in 2012 and 124–508 GDD (V2–V10) in 2013 based on the 5% acceptable yield loss level. At 70 cm row spacing, the CPWC ranged from 98–661 GDD in 2012 (V2–V13) and 144–616 GDD (V2–V12) in 2013. At 90 cm row spacing, the CPWC ranged from 80–771 GDD in 2012 (V1–V14) and 83–755 GDD (V1–V14) in 2013. In order to obtain a 95% weed-free yield, the weed management should start at 16 days after crop emergence (DAE) and continued until 52 DAE (V2–V11) for crops grown in 50 cm row spacing, 15 and 60 DAE (V2–V13) for 70 cm row spacing and 11 and 67 DAE (V1–V14) for crops grown in 90 cm row spacing. This suggests that cotton grown in narrow row spacing (50 cm) had greater competiveness against weeds compared with wider row spacing (70 and 90 cm). Cotton growers can benefit from these results by improving cost of weed control through better timing of weed management.


Critical duration of weed interference Critical weed-free period Timing of weed removal Integrated weed management Crop competition Weed interference 



The help provided by technical staffs of Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey is gratefully acknowledged.


  1. Amador-Ramirez, M. D. (2002). Critical period of weed control in transplanted chili pepper. Weed Research, 42, 203–209.CrossRefGoogle Scholar
  2. Arslan, M., Uremis, I., & Uludag, A. (2006). The critical period of weed control in double-cropped soybean. Phytoparasitica, 34, 159–166.CrossRefGoogle Scholar
  3. Bararpour, M. T., Talbert, R. E., & Frans, R. E. (1994). Spotted spurge (Euphorbia maculata) interference with cotton (Gossypium hirsutum). Weed Science, 42, 553–555.Google Scholar
  4. Bridges, D. C., & Chandler, J. M. (1987). Influence of Johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Science, 35, 63–67.Google Scholar
  5. Bryson, C. T. (1987). Interference of hemp sesbania (Sesbania exeltata) with cotton (Gossypium hirsutum). Weed Science, 35, 314–318.Google Scholar
  6. Bryson, C. T. (1990). Interference and critical time of removal of hemp sesbania (Sesbania exeltata) in cotton (Gossypium hirsutum). Weed Technology, 4, 833–837.Google Scholar
  7. Buchanan, G. A., Crowley, R. H., Street, J. E., & McGuire, J. A. (1980). Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirsutum). Weed Science, 28, 258–262.Google Scholar
  8. Bukun, B. (2004). Critical periods for weed control in cotton in Turkey. Weed Research, 44, 404–412.CrossRefGoogle Scholar
  9. Chauhan, B. S., & Johnson, D. E. (2010a). Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Research, 117, 177–182.CrossRefGoogle Scholar
  10. Chauhan, B. S., & Johnson, D. E. (2010b). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy, 105, 221–262.CrossRefGoogle Scholar
  11. Chauhan, B. S., Migo, T., Westerman, P. R., & Johnson, D. E. (2010). Post-dispersal predation of weed seeds in rice fields. Weed Research, 50, 553–560.CrossRefGoogle Scholar
  12. Chauhan, B. S., & Johnson, D. E. (2011). Row spacing and weed control timing affect yield of aerobic rice. Field Crops Research, 121, 226–231.CrossRefGoogle Scholar
  13. Evans, S. P., Knezevic, S. Z., Lindquist, J. L., Shapiro, C. A., & Blankenship, E. E. (2003). Nitrogen application influences the critical period for weed control in corn. Weed Science, 51, 408–417.CrossRefGoogle Scholar
  14. Gibson, K. D., Fischer, A. J., Foin, T. C., & Hill, J. E. (2002). Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Research, 42, 351–358.CrossRefGoogle Scholar
  15. Gilmore, E. C., & Rogers, R. S. (1958). Heat units as a method of measuring maturity in corn. Agronomy Journal, 50, 611–615.CrossRefGoogle Scholar
  16. Gozcu, D., & Uludag, A. (2005). Weeds in cotton fields and their importance in cotton in Kahramanmaras, Turkey. Türkiye Herboloji Dergisi, 8, 7–15.Google Scholar
  17. Kadioglu, I., Uremis, I., & Uludag, A. (2004). Relationships between seed bank and weed flora in cotton areas in the Cukurova region of Turkey. Bulletin of Pure and Applied Sciences, 23B, 61–69.Google Scholar
  18. Keeley, P. E., & Thullen, R. J. (1989). Growth and competition of black nightshade (Solanum nigrum) and Palmer amaranth (Amaranthus palmeri) with cotton (Gossypium hirsutum). Weed Science, 37, 326–334.Google Scholar
  19. Keeley, P. E., & Thullen, R. J. (1991). Growth and interaction of barnyardgrass (Echinocloa crus-galli) with cotton (Gossypium hirsutum). Weed Science, 39, 369–375.Google Scholar
  20. Keeley, P. E., & Thullen, R. J. (1993). Weeds in Cotton: Their Biology, Ecology, and Control. Technical Bulletin No. 1810. U.S. Department of Agriculture, Shafter, CA, USA.Google Scholar
  21. Knezevic, S. Z., Sikkema, P. H., Tardif, F., Hamill, A. S., Chandler, K., & Swanton, C. J. (1998). Biologically effective dose and selectivity of RPA 201772 (isoxaflutole) for preemergence weed control in corn (Zea mays). Weed Technology, 12, 670–676.Google Scholar
  22. Knezevic, S. Z., Horak, M. J., & Vanderlip, R. L. (1999). Estimates of physiological determinants for Amaranthus retroflexus. Weed Science, 47, 291–296.Google Scholar
  23. Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., & Lindquist, J. L. (2002). Critical period for weed control: the concept and data analysis. Weed Science, 50, 773–786.CrossRefGoogle Scholar
  24. Knezevic, S. Z., Evans, S. P., & Mainz, M. (2003). Row spacing influences the critical timing for weed removal in soybean (Glycine max). Weed Technology, 17, 666–673.CrossRefGoogle Scholar
  25. Knezevic, S. Z., Streibig, J. C., & Ritz, C. (2007). Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technology, 21, 840–848.CrossRefGoogle Scholar
  26. Knezevic, S. Z., Elezovic, I., Datta, A., Vrbnicanin, S., Glamoclija, D., Simic, M., & Malidza, G. (2013). Delay in the critical time for weed removal in imidazolinone-resistant sunflower (Helianthus annuus) caused by application of pre-emergence herbicide. International Journal of Pest Management, 59, 229–235.CrossRefGoogle Scholar
  27. Knezevic, S. Z., & Datta, A. (2015). The critical period for weed control: revisiting data analysis. Weed Science, 63, 188–202.CrossRefGoogle Scholar
  28. Kristensen, L., Olsen, J., & Weiner, J. (2008). Crop density, sowing pattern, and nitrogen fertilization effects on weed suppression and yield in spring wheat. Weed Science, 56, 97–102.CrossRefGoogle Scholar
  29. Marur, C. J., & Ruano, O. (2001). A reference system for determination of developmental stages of upland cotton. Revista de Oleaginosas e Fibrosas, 5, 313–317.Google Scholar
  30. Mashingaidze, A. B., van der Werf, W., Lotz, L. A. P., Chipomho, J., & Kropff, M. J. (2009). Narrow rows reduce biomass and seed production of weeds and increase maize yield. Annals of Applied Biology, 155, 207–218.CrossRefGoogle Scholar
  31. Mortensen, D. A., Dieleman, J. A., & Johnson, G. A. (1998). Weed spatial variation and weed management. In J. L. Hatfield, D. D. Buhler, & B. A. Stewart (Eds.), Integrated weed and soil management (pp. 293–310). Chelsea, MI, USA: Ann Arbor Press.Google Scholar
  32. Ngouajio, M., Foko, J., & Fouejio, D. (1997). The critical period of weed control in common bean (Phaseolus vulgaris L.) in Cameroon. Crop Protection, 16, 127–133.CrossRefGoogle Scholar
  33. Oliver, L. R., & Klingman, T. E. (1994). Influence of cotton (Gossypium hirsutum) and soybean (Glycine max) planting date on weed interference. Weed Science, 42, 61–65.Google Scholar
  34. Ozbek, N., Şahin, A., & Eksi, I. (2000). Bazı pamuk çeşitlerinin gelişme dönemlerinde sıcaklık gereksinimlerinin gün-derece (GD) ünitesi olarak belirlenmesi (The Determination of Temperature Requirement Represented as Growing Degree Days (GDD) for the Growing Stage of Some Cotton Species). General Directorate of Agricultural Research Publications No. 6, Ministry of Agriculture and Rural Affairs, Nazilli, Turkey.Google Scholar
  35. Papamichail, D., Eleftherohorinus, I., Froud-Williams, R., & Gravanis, F. (2002). Critical periods of weed competition in cotton in Greece. Phytoparasitica, 30, 1–7.CrossRefGoogle Scholar
  36. R Development Core Team (2006). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  37. Rogers, N. K., & Buchanan, G. A. (1986). Influence of row spacing on weed competition with cotton. Weed Science, 24, 410–414.Google Scholar
  38. SAS (Statistical Analysis Systems). (2005). SAS user’s guide.Version 8.1. Cary (NC): SAS Institute Inc.Google Scholar
  39. Sirtioglu, I. (2014). 2014 Turkey Cotton and Products Annual Report. USDA Foreign Agricultural Service, Global Agricultural Information Network. GAIN Report Number: TR4010. Internet Resource: Accessed 16 December 2014.
  40. Snipes, C. E., Street, J. E., & Walker, R. H. (1987). Interference periods of common cocklebur (Xanthium strumarium) with cotton (Gossypium hirsutum). Weed Science, 35, 529–532.Google Scholar
  41. Swanton, C. J., & Weise, S. F. (1991). Integrated weed management: the rationale and approach. Weed Technology, 5, 657–663.Google Scholar
  42. Tursun, N., Bukun, B., Karacan, S. C., Ngouajio, M., & Mennan, H. (2007). Critical period for weed control in leek (Allium porrum L.). HortScience, 42, 106–109.Google Scholar
  43. Tursun, N., Akinci, I. E., Uludag, A., Pamukoglu, Z., & Gozcu, D. (2012). Critical period for weed control in direct seeded red pepper (Capsicum annum L.). Weed Biology and Management, 12, 109–115.CrossRefGoogle Scholar
  44. Tursun, N., Datta, A., Tuncel, E., Kantarci, Z., & Knezevic, S. Z. (2015). Nitrogen application influenced the critical period for weed control in cotton. Crop Protection, 74, 85–91.CrossRefGoogle Scholar
  45. Uremis, I., Uludag, A., Ulger, A. C., & Cakir, B. (2009). Determination of critical period for weed control in the second crop corn under Mediterranean conditions. African Journal of Biotechnology, 8, 4475–4480.Google Scholar
  46. Van Acker, R. C., Swanton, C. J., & Weise, S. (1993). The critical period of weed control in soybean (Glycine max [L.] Merr.). Weed Science, 41, 194–200.Google Scholar
  47. Vencill, W. K., Giraudo, L. J., & Langdale, G. W. (1992). Response of cotton (Gossypium hirsutum) to coastal bermudagrass (Cynodon dactylon) density in a no-tillage system. Weed Science, 40, 455–459.Google Scholar
  48. Vencill, W. K., Giraudo, L. J., & Langdale, G. W. (1993). Soil moisture relations and critical period of Cynodon dactylon (L.) Pers. (coastal bermudagrass) competition in conservation tillage cotton (Gossypium hirsutum L.). Weed Research, 33, 89–96.CrossRefGoogle Scholar
  49. Weaver, S. E., & Tan, C. S. (1983). Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): Growth analysis. Weed Science, 31, 476–481.Google Scholar
  50. Webster, T. M. (2007). Cotton row spacing and plant population affect weed seed production. World Cotton Research Conference-4, 10–14 September 2014, Texas, USA. Internet Source: Accessed 16 December 2014.
  51. Zimdahl, R. L. (1988). The concept and application of the critical weed-free period. In M. A. Altieri & M. Leibman (Eds.), Weed management in agroecosystems: Ecological approaches (pp. 145–155). Boca Raton, FL, USA: CRC Press.Google Scholar
  52. Zimdahl, R. L. (1993). Fundamentals of weed science. San Diego, CA, USA: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Nihat Tursun
    • 1
  • Avishek Datta
    • 2
  • Selvi Budak
    • 3
  • Zekeriya Kantarci
    • 4
  • Stevan Z. Knezevic
    • 5
  1. 1.Plant Protection Department, Agricultural FacultyUniversity of InonuMalatyaTurkey
  2. 2.Agricultural Systems and Engineering, School of Environment, Resources and DevelopmentAsian Institute of TechnologyPathumthaniThailand
  3. 3.Plant Protection Department, Agricultural FacultyKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  4. 4.Agricultural Research InstituteKahramanmarasTurkey
  5. 5.Department of Agronomy and HorticultureUniversity of Nebraska, Northeast Research and Extension CenterConcordUSA

Personalised recommendations