Skip to main content

A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus

An Erratum to this article was published on 05 October 2015

Abstract

Pepper (Capsicum annuum) plants with the Tsw resistance gene showing unusually severe symptoms consisting of local lesions, chlorosis, stunting and systemic necrosis on the apical leaves were found in a commercial field in north eastern Spain in 2009. The presence of Tomato spotted wilt virus (TSWV) was confirmed in all diseased plants. After mechanical inoculation of Nicotiana glutinosa with infected field samples, biological clones of the virus were isolated from individual local lesions. These biological clones produced two different types of symptoms after inoculation on Tsw resistant pepper plants: (i) typical symptoms caused by resistance-breaking (RB) isolates characterized by chlorosis and stunting, and (ii) severe symptoms as observed in the field plants. Similar symptoms in pepper plants carrying the Tsw resistance gene were reproduced under controlled conditions, after simultaneous inoculation of RB and non-resistance-breaking (NRB) isolates. The NRB isolate was detected in a low proportion in the apical uninoculated leaves, whereas NRB isolates could not infect resistant pepper when inoculated alone. Co-infection by NRB and RB isolates induced disease synergism with systemic necrosis on the apical leaves. To our knowledge, this is the first case in which a synergic interaction between isolates of the same virus has been described, which has the ability to overcome a natural genetic resistance. This finding could have epidemiological implications for the management of TSWV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aramburu, J., Galipienso, L., Soler, S., & López, C. (2010). Characterization of Tomato spotted wilt virus isolates that overcome the Sw-5 resistance gene in tomato and fitness assays. Phytopathologia Mediterranea, 49, 342–351.

    CAS  Google Scholar 

  • Black, L. L., Hobbs, H. A., & Gatti, J. M., Jr. (1991). Tomato spotted wilt virus resistance in Capsicum chinense PI-152225 and PI-159236. Plant Disease, 75, 863.

    Article  Google Scholar 

  • Black, L. L., Hobbs, H. A., & Kammerlohr, D. S. (1996). Resistance of Capsicum chinense lines to Tomato spotted wilt virus from Louisiana, USA, and inheritance of resistance. Acta Horticulturae, 431, 393–401.

    Article  Google Scholar 

  • Boiteux, L. S., & de Ávila, A. C. (1994). Inheritance of a resistance specific to Tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphytica, 75, 139–142.

    Article  Google Scholar 

  • Clark, M. F., & Adams, A. N. (1977). Characteristic of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483.

    CAS  Article  PubMed  Google Scholar 

  • de Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA segment of Tomato spotted wilt virus has an ambisense character. Journal of General Virology, 71, 1001–1007.

    Article  PubMed  Google Scholar 

  • de Haan, P., Kormelink, R., Resende, R. O., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207–2216.

    Article  PubMed  Google Scholar 

  • de Ronde, D., Butterbach, P., Lohuis, D., Heild, M., van Lent, J. W. M., & Kormelink, R. (2013). Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus. Molecular Plant Pathology, 14, 405–415.

    Article  PubMed  Google Scholar 

  • de Ronde, D., Pasquier, A., Ying, S., Butterbach, P., Lohuis, D., & Kormelink, R. (2014). Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Molecular Plant Pathology, 15, 185–195.

    Article  PubMed  Google Scholar 

  • García-Cano, E., Resende, R. O., Fernández-Muñoz, R., & Moriones, E. (2006). Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology, 96, 1263–1269.

    Article  PubMed  Google Scholar 

  • Gil, R., & Luis, M. (1994). Should hypersensitive resistance to Tomato spotted wilt virus (TSWV) be used in breeding programs? Capsicum Eggplant Newsletter, 13, 88–89.

    Google Scholar 

  • Hanssen, I. M., Lapidot, M., & Thomma, B. P. H. J. (2010). Emerging viral diseases of tomato crops. Molecular Plant Microbe Interactions, 23, 539–548.

    CAS  Article  PubMed  Google Scholar 

  • Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., Aftergoot, E., Lapidot, M., & Moyer, M. (2000). Genetic mapping of the Tsw locus for resistance to the tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Molecular Plant Microbe Interactions, 13, 673–682.

    CAS  Article  PubMed  Google Scholar 

  • Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390, 110–121.

    CAS  Article  PubMed  Google Scholar 

  • López, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2011). Evolutionary analysis of tomato Sw-5 resistance breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92, 210–215.

    Article  PubMed  Google Scholar 

  • Lovato, F. A., Inoue-Nagata, A. K., Nagata, T., de Avila, A. C., Pereira, L. A., & Resende, R. O. (2008). The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Research, 137, 245–252.

    CAS  Article  PubMed  Google Scholar 

  • Margaria, P., Ciuffo, M., & Turina, M. (2004). Resistance breaking strain of Tomato spotted wilt virus (Tospovirus; Bunyaviridae) on resistant pepper cultivars in Almeria, Spain. Plant Pathology, 53, 795.

    Article  Google Scholar 

  • Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Molecular Plant Microbe Interactions, 20, 547–558.

    CAS  Article  PubMed  Google Scholar 

  • Moury, B., Palloix, A., Selassie-Gebre, K., & Marchoux, G. (1997). Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica, 94, 45–52.

    Article  Google Scholar 

  • Moury, B., Selassie, K. G., Marchoux, G., Daubeze, A. M., & Palloix, A. (1998). High temperature effects on hypersensitive resistance to Tomato spotted wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). European Journal of Plant Pathology, 104, 489–498.

    Article  Google Scholar 

  • Murphy, J. F., & Bowen, K. L. (2006). Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology, 96, 240–247.

    Article  PubMed  Google Scholar 

  • Naidu, R. A., Sherwood, J. L., & Deom, C. M. (2008). Characterization of a vector-non-transmissible isolate of Tomato spotted wilt virus. Plant Pathology, 57, 190–200.

    CAS  Google Scholar 

  • Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219–236.

    CAS  Article  PubMed  Google Scholar 

  • Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Marchoux, G. (2003). An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227–264.

    Google Scholar 

  • Persley, D. M., Thomas, J. E., & Sharman, M. (2006). Tospoviruses - an Australian perspective. Australasian Plant Pathology, 35, 161–180.

    Article  Google Scholar 

  • Prins, M., & Goldbach, R. (1998). The emerging problem of tospovirus infection and nonconventional methods of control. Trends in Microbiology, 6, 31–35.

    CAS  Article  PubMed  Google Scholar 

  • Qiu, W., & Moyer, J. W. (1999). Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology, 89, 575–582.

    CAS  Article  PubMed  Google Scholar 

  • Roggero, P., Lisa, V., Nervo, G., & Pennazio, S. (1996). Continuous high temperature can break the hypersensitivity of Capsicum chinense ‘PI152225’ to Tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea, 35, 117–120.

    Google Scholar 

  • Roggero, P., Masenga, V., & Tavella, L. (2002). Field isolates of Tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Disease, 86, 950–954.

    Article  Google Scholar 

  • Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.

    CAS  Article  PubMed  Google Scholar 

  • Sin, S. H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmissión of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of temperature and growth stage interaction on pattern of virus presence in TSWV-resistance accessions of Capsicum chinense. Plant Disease, 82, 1199–1204.

    Article  Google Scholar 

  • Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of Tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Canadian Journal of Plant Pathology, 21, 317–323.

    Article  Google Scholar 

  • Stevens, M. R., Scott, S. J., & Gergerich, R. C. (1992). Inheritance of a gene for resistance to Tomato spotted wilt virus from Lycopersicon peruvianum Mill. Euphytica, 59, 9–17.

    Google Scholar 

  • Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13, 204–216.

    Article  PubMed  Google Scholar 

  • Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., & Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532, 75–79.

    CAS  Article  PubMed  Google Scholar 

  • Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2011). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92, 961–973.

    CAS  Article  PubMed  Google Scholar 

  • Thomas-Carroll, M. L., & Jones, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strain of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142, 235–243.

    Article  Google Scholar 

  • Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the mediterranean area. Advances in Virus Research, 84, 403–437.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Matas for locating commercial crops of pepper carrying the Tsw gene infected with TSWV and F. Aparicio for his excellent review of the manuscript. This research was supported by grants RTA2008-00010-C03 and RTA2013-00047-C02 from the Instituto Nacional de Investigaciones Agrarias (INIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo López.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aramburu, J., Galipienso, L., Soler, S. et al. A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus . Phytoparasitica 43, 597–605 (2015). https://doi.org/10.1007/s12600-015-0482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0482-1

Keywords

  • Epidemiology
  • Hypersensitive Response
  • Tsw
  • TSWV
  • Tospovirus