Skip to main content
Log in

Effect of selected synergists on insecticidal toxicity of deltamethrin and biochemical mechanisms on the field populations of tobacco caterpillar from Punjab, India

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Spodoptera litura (Fabricius) is an important polyphagous and destructive pest worldwide causing heavy foliage damage to more than 115 species of host plants, and is exposed to insecticides throughout the year, resulting in the rapid development of resistance. Different population’s viz., susceptible Hoshiarpur (HSP), resistant Malerkotla (MAL) and deltamethrin selected strain (MAL-Sel) of S. litura collected from different locations were treated in the laboratory by leaf dip method with deltamethrin alone and in combination with different ratios of synergists like Piperonyl butoxide (PBO), Tri phenyl phosphate (TPP) and Diethyl maleate (DEM). When PBO, TPP and DEM at ratio of 1:4 were used as synergist in the HSP, MAL and MAL-Sel strain, the synergistic ratio was 3.91, 3.66 and 3.31 for susceptible population (HSP), 8.24, 7.67 and 6.85 for resistant population (MAL), 21.30, 23.67 and 18.26 for MAL-Sel strain selected after 10 generations, respectively. The results obtained in the present study revealed that PBO at 1:4 had highest synergistic effect on the resistant population MAL (8.24 fold) whereas, PBO at 1:6 showed highest synergistic effect i.e. 4.78 folds on the susceptible (HSP) population followed by TPP and DEM (1:4). However, the stronger synergism of TPP (1:4) was 23.67 fold followed by PBO (21.30 fold) and DEM (18.26) at 1:4 in case of MAL-Sel strain which suggests the involvement of esterases and monooxygenases. The resistance to the AChE targeted insecticide in this pest depended on the target insensitivity and the enhanced activity of MFO and esterase. Thus, the cross resistance between pyrethroids and the AChE targeted insecticides could be resulted from the enhanced activity of MFO and esterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Ahmad, M., Arif, M. I., & Ahmad, M. (2007a). Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26, 809–817.

    Article  CAS  Google Scholar 

  • Ahmad, M., Sayyed, A. H., Crickmore, N., & Saleem, M. A. (2007b). Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Sciences, 63, 1002–1010.

    Article  CAS  Google Scholar 

  • Anon. (1990). Proposed susceptibility tests, IRAC method No. 7,” Bull Eur Plant Protect Org, 20, pp. 399-400. (IRAC; http://www.irac-online.org/resources/methods.asp).

  • Cheema H K (2013) Evaluation of insecticide resistance profile in Spodoptera litura (Fabricius) populations through biological, biochemical and molecular diagnosis. Ph.D. dissertatioin. Punjab Agricultural University, Ludhiana, India

  • Clarke, S. E., Brealey, C. J., & Gibson, G. G. (1989). Cytochrome P-450 in the housefly: induction, substrate specificity and comparison to three rat hepatic isoenzymes. Xenobiotica, 19, 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  • Daly, J. C., & Fisk, J. H. (1992). Inheritance of metabolic resistance to the synthetic pyrethroids in Australian Helicoverpa armigera (Lepidoptera, Noctuidae). Bulletin of Entomological Research, 82, 5–12.

    Article  CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for Agricultural Research (2nd ed., p. 680). New York: John Willey and Sons.

    Google Scholar 

  • Han, Z., Moores, G., Devonshire, A., & Denholm, I. (1998). Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii. Pesticide Biochemistry and Physiology, 62, 164–171.

    Article  CAS  Google Scholar 

  • Hansen, L. G., & Hodgson, E. (1971). Biochemical characteristics of insect microsomes N- and O-demethylation. Biochemistry Pharmacology, 20, 1569–1573.

    Article  CAS  Google Scholar 

  • Huang, S. J., & Han, Z. J. (2007). Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pesticide Biochemistry and Physiology, 87, 14–22.

    Article  CAS  Google Scholar 

  • Ishaaya, I., Yablonski, S., & Horowitz, A. R. (1995). Comparative toxicity of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica, 23, 139–145.

    Article  CAS  Google Scholar 

  • Kang, C. Y., Wu, G., & Miyata, T. (2006). Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom., Aleyrodidae). Journal of Applied Entomology, 130, 377–385.

    Article  CAS  Google Scholar 

  • Kranthi, K. R. (2005). Insecticide Resistance-Monitoring, Mechanisms and Management Manual, pp. 150, CICR, Nagpur, India and ICAC, Washington.

  • Kranthi, K. R., Jadhav, D. R., Kranthi, S., Wanjari, R. R., Ali, S. S., & Russell, D. A. (2002). Insecticide resistance in five major insect pests of cotton in India. Crop Protection, 21, 449–460.

    Article  CAS  Google Scholar 

  • Li, F., & Han, Z. (2002). Purification and characterization of acetylcholinesterase from cotton aphid, Aphis gossypii Glover. Archives of Insect Biochemistry and Physiology, 51, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Mukherjee, A. B., & Srivastava, V. S. (1970). Bioassay of the relative toxicity of some pesticides to the larvae of Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). Indian Journal of Entomology, 32, 251–255.

    CAS  Google Scholar 

  • Nair, M. R. G. K. (1975). Insects and mites of crop pests in India (Istth ed., p. 158). New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Oppenoorth, F. J., & Welling, W. (1976). Biochemistry and physiology of resistance. pp. 507. In C. F. Wilkinson (Ed.), Insect Biochemistry and Physiology. New York: Plenum.

    Google Scholar 

  • Prabhaker, N., Coudrit, D. L., & Toscano, N. C. (1988). Effects of synergists on organophosphate and permethrin resistance in sweet potato whitefly (Homoptera: Aleyrididae). Journal of Economic Entomology, 81, 34–39.

    Article  CAS  Google Scholar 

  • Qin, H., Ye, Z., Huang, S., Ding, J., & Luo, R. (2004). The correlations of the different host plants with preference level, life duration and survival rate of Spodoptera litura Fabricius. Chinese Journal of eco-agriculture, 12, 40–42.

    Google Scholar 

  • Radhika, P., Subbaratnam, G. V., & Punnaiah, K. C. (2005). Dermal and oral toxicity of profenofos on relatively resistant population of Spodoptera litura F. Journal of Plant Protection and Environment, 2, 4–11.

    CAS  Google Scholar 

  • Sayyed, A. H., Ahmad, M., & Saleem, M. A. (2008). Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 101, 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Sayyed, A. H., Attique, M. N. R., Khaliq, A., & Wright, D. J. (2005). Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutallidae) from Pakistan. Pest Management Sciences, 61, 636–642.

    Article  CAS  Google Scholar 

  • Shad, S. A., Sayyed, A. H., & Saleem, M. A. (2010). Cross-resistance, mode of inheritance and stability of resistance to emamectin in Spodoptera litura Fab. (Lepidoptera: Noctuidae). Pest Management Sciences, 66, 839–846.

    CAS  Google Scholar 

  • Srivastava, B. K., & Joshi, H. C. (1965). Occurrence of resistance to BHC in Prodenia litura Fab. (Lepidoptera: Noctuidae). Indian Journal of Entomology, 27, 102–104.

    Google Scholar 

  • Verma, A. N., Verma, N. D., & Singh, R. (1971). Chemical control of Prodenia litura Fab. (Lepidoptera: Noctuidae) on cauliflower. Indian Journal of Horticulture, 28, 240–243.

    CAS  Google Scholar 

  • Whalon, M. E., Mota-Sanchez, D., & Hollingworth, R. M. (2008). Analysis of global pesticide resistance in arthropods. In M. E. Whalon, D. Mota-Sanchez, & R. M. Hollingworth (Eds.), Global Pesticide Resistance in Arthropods (pp. 5–31). Wallingford, United Kingdom: CABI International.

    Chapter  Google Scholar 

  • Yang, M. L., Zhang, J. Z., Zhu, K. Y., Xuan, T., Liu, X. J., Guo, Y. P., & Ma, E. B. (2009). Mechanism of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemistry and Physiology, 71, 3–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Professor and Head, Department of Entomology, PAU, Ludhiana for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjot Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kang, B.K. Effect of selected synergists on insecticidal toxicity of deltamethrin and biochemical mechanisms on the field populations of tobacco caterpillar from Punjab, India. Phytoparasitica 43, 565–575 (2015). https://doi.org/10.1007/s12600-015-0475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0475-0

Keywords

Navigation