, Volume 43, Issue 4, pp 471–483 | Cite as

Comparison of analytical techniques used to identify tomato-pathogenic strains of Fusarium oxysporum

  • Amalia Boix-Ruíz
  • Laura Gálvez-Patón
  • Miguel de Cara-GarcíaEmail author
  • Daniel Palmero-Llamas
  • Francisco Camacho-Ferre
  • Julio César Tello-Marquina


Two Fusarium oxysporum f. sp. lycopersici (Fol race 2 and Fol race 3) and two f. sp. radicis-lycopersici (Forl) isolates plus eight to ten monosporic descendants from each were identified through molecular analysis and pathogenicity tests using differential varieties under different thermal conditions. The results for molecular and pathogenicity test for Fol were variable and to some extent contradictory. The Fol race 3 isolate and its progeny were amplified by the primers SIX1 and SIX3b but, depending on the test temperatures, the parental plus two descendants lost virulence, and one isolate completely lost virulence in all the tests. The Fol race 2 isolate was amplified by the SIX1 primer, but two descendants were not. The monosporic isolates and the parentals did not show pathogenicity on plants. All Forl isolates and progenies were amplified by the Forl primer, but one of the parentals plus all of its descendants did not show pathogenicity on plants. In addition, temperatures influenced the pathogenicity tests, yielding different virulences for Fol, which was enhanced at higher temperatures, whereas on the contrary a lower temperature was preferable for Forl.


Crown and root rot Diagnosis Forma specialis Molecular identification Wilt 


  1. Armstrong, G. M., & Armstrong, J. K. (1968). Formae speciales and races of Fusarium oxysporum causing a tracheomycosis in the syndrome of disease. Phytopathology, 58, 1242–1246.Google Scholar
  2. Bao, J. R., Fravel, D. R., O´Neill, N. R., Lazarovits, G., and Van Berkum, P. (2002). Genetic analysis of pathogenic and nonpathogenic Fusarium oxysporum from tomato plants. Canadian Journal of Botany, 80, 271–279.Google Scholar
  3. Brown, W. (1926). Studies in the genus Fusarium. IV. On the occurrence of saltations. Annals of Botany, 40, 203–221.Google Scholar
  4. Buxton, E. W. (1956). Heterokaryosis and parasexual recombination in pathogenic strains of Fusarium oxysporum. Journal of General Microbiology, 15, 133–139.PubMedCrossRefGoogle Scholar
  5. Cai, G., Gale, L. R., Schneider, R. W., Kistler, H. C., Davis, R. M., Elias, K. S., et al. (2003). Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a single site in California. Phytopathology, 93, 1014–1022.PubMedCrossRefGoogle Scholar
  6. Cirulli, M., & Ciccarese, F. (1980). Influenza di alcuni fattori sull´espressione delle resistenze poligénica e monogenica a Fusarium oxysporum f. sp. lycopersici nel Pomodoro. Inftore Fitopatologia, 11–12, 49–53.Google Scholar
  7. Cirulli, M., & Ciccarese, F. (1982). Factors affecting early screening of tomatoes for monogenic and polygenic resistance to Fusarium wilt. Crop Protection, 1, 341–348.CrossRefGoogle Scholar
  8. Clayton, E. E. (1923). The relation of temperature to the Fusarium wilt of the tomato. American Journal of Botany, 10, 133–147.CrossRefGoogle Scholar
  9. Çolak, A., & Biçici, M. (2013). PCR detection of Fusarium oxysporum f. sp. radicis-lycopersici and races of F. oxysporum f. sp. lycopersici of tomato in protected tomato-growing areas of the eastern Mediterranean region of Turkey. Turkish Journal of Agriculture and Forestry, 37, 457–467.Google Scholar
  10. Coplin, D. L., Sequeira, L., & Hanson, R. S. (1974). Pseudomonas solanacearum: virulence of biochemical mutants. Canadian Journal of Microbiology, 20, 519–529.PubMedCrossRefGoogle Scholar
  11. Edel-Herman, V., Steinberg, C., Avelange, I., Laguerre, G., & Alabouvette, C. (1995). Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology, 85, 579–585.CrossRefGoogle Scholar
  12. Elgersma, D. M., Machardy, W. E., & Beechman, C. H. (1972). Growth and distribution of Fusarium oxysporum f. sp. lycopersici in near-isogenic lines of tomato resistance or susceptible to wilt. Phytopathology, 62, 1232–1237.CrossRefGoogle Scholar
  13. Elliott, J. A., & Crawford, R. F. (1922). The spread of tomato wilt by infected seed. Phytopathology, 12, 428–434.Google Scholar
  14. Gao, R., & Zhang, G. (2013). Potential of DNA barcoding for detecting quarantine fungi. Phytopathology, 103, 1103–1107.PubMedCrossRefGoogle Scholar
  15. Garber, E. D. (1956). A nutrition inhibition hypothesis of pathogenicity. American Naturalist, 90, 183–194.CrossRefGoogle Scholar
  16. Hansen, N. H. (1938). The dual phenomenon in imperfect fungi. Mycologia, 30, 442–455.CrossRefGoogle Scholar
  17. Hart, L. P., & Endo, R. M. (1981). The effect of time exposure to inoculum, plant age, root development and root wounding on Fusarium yellows of celery. Phytopathology, 71, 77–79.CrossRefGoogle Scholar
  18. Haymaker, H. H. (1928). Pathogenicity of two strains of the tomato wilt fungus, Fusarium lycopersici Sacc. Journal of Agricultural Research, 36, 675–695.Google Scholar
  19. Hirano, Y., & Arie, T. (2006). PCR-based differentiation of Fusarium oxysporum f. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 72, 273–283.CrossRefGoogle Scholar
  20. Holliday, P. (2001). A dictionary of plant pathology. Cambridge, UK: Cambridge University Press.Google Scholar
  21. Houterman, P. M., Speijer, D., Dekker, H. L., De Koster, C. G., Cornelissen, B. J. C., & Rep, M. (2007). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology, 8, 215–222.PubMedCrossRefGoogle Scholar
  22. Houterman, P. M., Cornelissen, B. J. C., & Rep, M. (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathology, 4, doi: e1000061.Google Scholar
  23. Houterman, P. M., Ma, L., van Ooijen, G., de Vroomen, M. J., Cornelissen, B. J. C., Takken, F. L. W., et al. (2009). The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant Journal, 58, 970–978.PubMedCrossRefGoogle Scholar
  24. Jarvis, W. R., & Shoemaker, R. A. (1978). Taxonomic status of Fusarium oxysporum causing foot and root rot of tomato. Phytopathology, 68, 1679–1680.CrossRefGoogle Scholar
  25. Jarvis, W. R., & Thorpe, H. J. (1976). Susceptibility of Lycopersicon species and hybrids to the foot and root rot pathogen Fusarium oxysporum. Plant Disease Reporter, 60, 1027–1031.Google Scholar
  26. Kawabe, M., Kobayashi, Y., Okada, G., Yamaguchi, I., Teraoka, T., and Arie, T. (2005). Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f.sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are eachcomposed of isolates of a single mating type and a single or closely related vegetative compatibility group. Journal of General Plant Pathology, 71, 263–272.Google Scholar
  27. Leary, J. V. (1972). Heterokaryosis of Fusarium oxysporum Schlecht. causing crown rot of tomato. Phytopathology, 62, 771.Google Scholar
  28. Leslie, J. F. (2012). Genetics and Fusarium oxysporum. pp. 39-46. In M. L. Gullino, J. Katan, & A. Garibaldi (Eds.), Fusarium wilts of greenhouse vegetable and ornamental crops. St. Paul, MN, USA: APS Press.Google Scholar
  29. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Ames, IA, USA: Blackwell Publishing.CrossRefGoogle Scholar
  30. Lievens, B., Houterman, P. M., & Rep, M. (2009a). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300, 201–215.PubMedCrossRefGoogle Scholar
  31. Lievens, B., Van Baarlen, P., Verreth, C., Van Kerckhove, S., Rep, M., & Thomma, B. P. (2009b). Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-1a and exopolygalacturonase sequences. Mycological Research, 113, 1181–1191.PubMedCrossRefGoogle Scholar
  32. Mace, M. E., Veech, J. A., & Hammerschlag, F. (1971). Fusarium wilt of susceptible and resistant tomato isolines, spore transport. Phytopathology, 61, 627–630.CrossRefGoogle Scholar
  33. Menzies, J. G., & Jarvis, W. R. (1994). The infestation of tomato seed by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Pathology, 43, 378–386.CrossRefGoogle Scholar
  34. Mes, J. J., Weststeijn, E. A., Herlaar, F., Lambalk, J. J. M., Wijbrandi, J., Haring, M. A., et al. (1999). Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology, 89, 156–160.PubMedCrossRefGoogle Scholar
  35. Oliveira, D., Alves, C. M., Barbosa, C., Ribeiro, M. L., Santos, M. T., Menezes, V. L., et al. (2013). Identification of races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici by molecular markers. African Journal of. Microbiological Research, 7, 2324–2331.Google Scholar
  36. Palmero, D., De Cara, M., Santos, M., & Tello, J. C. (2011). Control of diseases from formae speciales of Fusarium oxysporum causing wilt in intensive horticultural crops. In F. M. Alves-Santos & J. J. Diez (Eds.), Control of Fusarium diseases (pp. 209–228). Kerala, India: Research Signpost.Google Scholar
  37. Parke, J. L., & Grau, C. R. (1993). Aphanomyces. pp. 27-30 in. L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.) Methods for research on soilborne phytopathogenic fungi. St. Paul, MN, USA: APS Press.Google Scholar
  38. Querol, A., Barrio, E., & Ramon, D. (1992). A comparative study of different methods of yeast strain characterization. Systematic and Applied Microbiology, 21, 315–323.Google Scholar
  39. Reis, A., & Boiteux, L. S. (2007). Outbreak of Fusarium oxysporum f. sp. lycopersici race 3 in commercial fresh-market tomato fields in Rio de Janeiro State, Brazil. Horticultura Brasileira, 25, 451–454.CrossRefGoogle Scholar
  40. Rep, M., Van Der Does, H. C., Meijer, M., Van Wijk, R., Houterman, P. M., Dekker, H. L., et al. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53, 1373–1383.PubMedCrossRefGoogle Scholar
  41. Rep, M., Meijer, M., Houterman, P. M., Van Der Does, H. C., & Cornelissen, B. J. (2005). Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Molecular Plant Microbe Interactions, 18, 15–23.PubMedCrossRefGoogle Scholar
  42. Rodríguez, M. C., Tello, J., & Cuartero, J. (1995). Variations in response of a number of tomato genotypes inoculated with Fusarium oxysporum f. sp. lycopersici race 2. Acta Horticulturae, 412, 515–522.Google Scholar
  43. Rodríguez-Molina, M. C., Medina, I., Torres-Vila, L. M., & Cuarteo, J. (2003). Vascular colonization patterns in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f. sp. lycopersici races 0 and 1. Plant Pathology, 52, 199–203.CrossRefGoogle Scholar
  44. Sanchez, L. E., Leary, J. V., & Endo, R. M. (1975). Chemical mutagenesis of Fusarium oxysporum f. sp. lycopersici, non-selected changes in pathogenicity of auxotrophic mutants. Journal of General Microbiology, 87, 326–332.PubMedCrossRefGoogle Scholar
  45. Sato, R., & Araki, T. (1974). On the tomato root-rot disease occurring under vinyl-house conditions in southern Hokkaido. Annual Report of the Society of Plant Protection of North Japan, 25, 5–13.Google Scholar
  46. Tello, J. C., & Lacasa, A. (1988a). “La podredumbre del cuello y de las raíces”, causada por Fusarium oxysporum f. sp. radicis-lycopersici, nueva enfermedad en los cultivos de tomate (Lycopersicum esculentum Mill.) españoles. Boletin de Sanidad Vegetal-Plagas, 14, 307–312.Google Scholar
  47. Tello, J. C., & Lacasa, A. (1988b). Evolución racial de poblaciones Fusarium oxysporum f. sp. lycopersici. Boletin de Sanidad Vegetal-Plagas, 14, 335–341.Google Scholar
  48. Tello, J. C., Vares, F., & Lacasa, A. (1991). Manual de Laboratorio. Diagnóstico de Hongos, Bacterias y Nematodos Fitopatógenos. Madrid, Spain: MAPA.Google Scholar
  49. Tello Marquina, J. C., & Lacasa Plasencia, A. (1990). Fusarium oxysporum en los Cultivos Intensivos del Litoral Mediterráneo de España. Fases Parasitaria (Fusariosis Vasculares del Tomate y del Clavel) y no Parasitaria. Madrid, Spain: Ministerio de Agricultura Pesca y Alimentacion.Google Scholar
  50. Tuveson, R. W., & Garber, E. D. (1959). Genetics of phytopathogenic fungi I. Virulence of biochemical mutants of Fusarium oxysporum f. sp. pisi. Botanical Gazette, 121, 69–74.CrossRefGoogle Scholar
  51. Ulloa, M., & Hanlin, R. T. (2002). Illustrated dictionary of mycology. St. Paul, MN, USA: APS Press.Google Scholar
  52. Vakalounakis, D. J. (1996). Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant Disease, 80, 313–316.CrossRefGoogle Scholar
  53. Van Der Does, H. C., Lievens, B., Claes, L., Houterman, P. M., Cornelissen, B. J., & Rep, M. (2008). The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environmental Microbiology, 10, 1475–1485.PubMedCrossRefGoogle Scholar
  54. Van Der Does, H. C., & Rep, M. (2007). Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Molecular Plant Microbe Interactions, 20, 1175–1182.PubMedCrossRefGoogle Scholar
  55. Walker, J. C. (1971). Fusarium wilt of tomato. Monograph no. 6. St. Paul, MN, USA: The American Phytopathological Society.Google Scholar
  56. Wellman, F. L. (1943). Increase of pathogenicity in tomato-wilt Fusarium. Phytopathology, 33, 175–193.Google Scholar
  57. White, T. J., Burns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In M. A. Innis, D. H. Gelfald, J. J. Sninsky, & T. J. White (Eds.), PCR protocol, a guide to methods and application. New York, NY: Academic Press.Google Scholar
  58. Yamamoto, I., Komada, M., Kuniyasu, K., Saito, M., & Ezuka, A. (1974). A new race of Fusarium oxysporum f. sp. lycopersici inducing root rot of tomato. Proceedings of the Kansas Plant Protection Society, 16, 17–29.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Amalia Boix-Ruíz
    • 1
  • Laura Gálvez-Patón
    • 2
  • Miguel de Cara-García
    • 3
    Email author
  • Daniel Palmero-Llamas
    • 2
  • Francisco Camacho-Ferre
    • 1
  • Julio César Tello-Marquina
    • 1
  1. 1.Grupo de Investigación AGR-200 “Producción Vegetal en Sistemas de Cultivo Mediterráneos”Universidad de AlmeríaAlmeríaSpain
  2. 2.Universidad Politécnica de Madrid. E.U.I.T.A.MadridSpain
  3. 3.Crop ProtectionIFAPA-La MojoneraLa MojoneraSpain

Personalised recommendations