Skip to main content
Log in

Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The effects of Bacillus subtilis, Aspergillus awamori and Pseudomonas fluorescens on the wilt–leaf spot disease complex of tomato caused by Meloidogyne javanica, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria were observed. Inoculation of B. subtilis, A. awamori and P. fluorescens caused a significant increase in plant growth and chlorophyll contents of pathogen-inoculated plants. Inoculation of P. fluorescens caused a greater increase in plant growth and chlorophyll contents of pathogen-inoculated plants than that caused by A. awamori. Application of P. fluorescens with B. subtilis caused a greater increase in plant growth and chlorophyll contents of pathogen-inoculated plants, but the maximum increase was observed when all the three biocontrol agents were inoculated together. P. fluorescens colonized tomato roots more than colonization by B. subtilis. Root colonization by P. fluorescens and B. subtilis was reduced when pathogens were inoculated with rhizobacteria. Inoculation of P. fluorescens caused a greater reduction in galling and nematode reproduction, followed by B. subtilis and A. awamori. Maximum reduction in galling, nematode reproduction, wilt and leaf spot disease indices was observed when all three biocontrol agents were used together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant pathology (5th ed.). London, UK: Elsevier Academic Press.

    Google Scholar 

  • Akhtar, M. S., & Siddiqui, Z. A. (2008). Biocontrol of a root-rot disease complex of chickpea by Bacillus subtilis, Rhizobium sp. and Pseudomonas striata. Crop Protection, 27, 410–417.

    Article  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307–319.

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.

    Article  CAS  PubMed  Google Scholar 

  • Bhatti, D. S., & Jain, R. K. (1977). Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian Journal of Nematology, 7, 37–41.

    Google Scholar 

  • Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual Review of Phytopathology, 48, 419–436.

    Article  CAS  PubMed  Google Scholar 

  • Butcher, R. A., Schroeder, F. C., Fischbach, M. A., Straight, P. D., Kolter, R., Walsh, C. T., et al. (2007). The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the USA, 104, 1506–1509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buysens, S., Heungens, K., Poppe, J., & Höfte, M. (1996). Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied Environmental Microbiology, 62, 865–871.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., et al. (2009). Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology, 140, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., et al. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15, 848–864.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., et al. (1997). Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23, 95–106.

    Article  CAS  Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi. London, UK: Academic Press.

    Google Scholar 

  • Eapen, S. J., Beena, B., & Ramana, K. V. (2005). Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. Journal of Invertebrate Pathology, 88, 218–225.

    Article  PubMed  Google Scholar 

  • Hailei, W., & Liqun, Z. (2006). Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek Journal of Microbiology, 89, 267–280.

    Article  Google Scholar 

  • Howell, C. R., & Stipanovic, R. D. (1979). Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480–482.

    Article  CAS  Google Scholar 

  • Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70, 712–715.

    Article  CAS  Google Scholar 

  • Ji, X. L., Lu, G. B., Gai, Y. P., Zheng, C. C., & Mu, Z. M. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology, 65, 565–573.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. R., Khan, S. M., & Mohiddin, F. A. (2007). Effect of certain fungal and bacterial phosphate solubilizing microorganisms on the fusarial wilt of tomato. Developmental Plant and Soil Science, 102, 357–361.

    Article  Google Scholar 

  • Lemessa, F., & Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control, 42, 336–344.

    Article  Google Scholar 

  • Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions on plant surfaces. Molecular and Plant Microbe Interactions, 4, 5–13.

    Article  CAS  Google Scholar 

  • Murakami, H. (1979) Classification system of the black Aspergilli. Taxonòmic studies on Japanese industrial strains of the Aspergillus (part 32). Journal of the Brewing Society of Japan, 74, 849-853.

  • Nagorska, K., Bikowski, M., & Obuchowskji, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica, 54, 495–508.

    CAS  PubMed  Google Scholar 

  • Nair, M. G., & Burke, B. A. (1988). A new fatty acid, methyl ester and other biologically active compounds from Aspergillus niger. Phytochemistry, 27, 3169–3173.

    Article  CAS  Google Scholar 

  • Nakazawa, R. (1907). Onkoji fungus, Aspergillus awamori. Report of Agriculture, Government Research Institute of Formosa, vol. 1.

  • Nowak-Thompson, B., Gould, S. J., Kraus, J., & Loper, J. E. (1994). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Canadian Journal of Microbiology, 40, 1064–1066.

    Article  CAS  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., & Joris, B., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.

  • Palakshappa, M. G., Kulkarni, S., & Hedge, R. K. (1989). Effect of organic amendment on the survival activity of Sclerotium rolfsii Sacc., a causal agent of the foot rot of berelvine. Mysore Journal of Agricultural Science, 23, 332–336.

    Google Scholar 

  • Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.

    Article  CAS  PubMed  Google Scholar 

  • Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84, 940–947.

    Article  Google Scholar 

  • Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7, 579–586.

    Article  CAS  PubMed  Google Scholar 

  • Qing, Y., Wei, G., Xiaogang, W., & Liqun, Z. (2009). Regulation of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by the two-component PhoP/PhoQ system. Microbiology, 155, 124–133.

    Article  Google Scholar 

  • Raupach, G. S., & Kloepper, J. W. (1998). Mixture of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, D. D. R. (1985). Analysis of crop losses in tomato due to Meloidogyne incognita. Indian Journal of Nematology, 15, 55–59.

    Google Scholar 

  • Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant diseases. Louis, MO, USA: St. John S. Swift Co. Inc.

    Google Scholar 

  • Sharma, P. D. (2001). Microbiology. Meerut, India: Rastogi and Company.

    Google Scholar 

  • Siddiqui, Z. A., & Futai, K. (2009). Biocontrol of Meloidogyne incognita using antagonistic fungi, plant growth-promoting rhizobacteria and cattle manure on tomato. Pest Management Science, 65, 943–948.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, Z. A., Iqbal, A., & Mahmood, I. (2001). Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology, 16, 179–185.

    Article  Google Scholar 

  • Singh, N., & Siddiqui, Z. A. (2012). Inoculation of tomato with Ralstonia solanacearum, Xanthomonas campestris, and Meloidogyne javanica. International Journal of Vegetable Science, 18, 78–86.

    Article  Google Scholar 

  • Southey, J. F. (1986). Laboratory methods for work with plant and soil nematodes. London, UK: MAFF, Her Majesty's Stationery Office.

    Google Scholar 

  • Vassilev, N., Vassileva, N., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 86, 221–224.

    Article  Google Scholar 

  • Wei, H. L., Wang, Y., Zhang, L. Q., & Tang, W. H. (2004). Identification and characterization of biocontrol bacterial strain RT 2P24 and CPF-10. Acta Phytopathologica Sinica, 34, 80–85.

    Google Scholar 

  • Weidenmaier, C., & Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. National Review of Microbiology, 6, 276–287.

    Article  CAS  Google Scholar 

  • Wilson, M., & Backman, P. A. (1999). Biological control of plant pathogens. In J. R. Ruberson (Ed.), Handbook of pest management (pp. 309–335). New York, NY: Marcel-Dekker, Inc.

    Google Scholar 

  • Wu, S. G., Duan, H. M., Tia, T., Ya, N., Zhou, H. Y., et al. (2010). Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. FEMS Microbiology Letters, 309, 16–24.

    CAS  PubMed  Google Scholar 

  • Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1996). Ralstonia, named after E. Ralston, the American bacteriologist who first described Pseudomonas pickettii. Validation list no. 57. International Journal of Systematic Bacteriology, 46, 625--626.

  • Xu, G. W., & Gross, D. C. (1986). Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology, 76, 414–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki A. Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Siddiqui, Z.A. Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43, 61–75 (2015). https://doi.org/10.1007/s12600-014-0427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-014-0427-0

Keywords

Navigation