Skip to main content
Log in

Morphological, pathological and molecular characterization of Phytophthora colocasiae responsible for taro leaf blight disease in India

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The oomycetous fungus Phytophthora colocasiae that causes taro leaf blight is one of the most devastating diseases of taro and is widely distributed in India. A combination of morphological (colony morphology, mating type, pathogenicity, metalaxyl sensitivity) and molecular techniques (rDNA ITS sequencing and Start codon targeted polymorphism, ScoT analysis) was used to characterize 50 isolates of P. colocasiae obtained from different locations in India. Considerable differences in morphological parameters were observed. ScoT analysis revealed high polymorphism among the isolates. This study confirms that isolates of P. colocasiae are highly dynamic in nature and a considerable degree of diversity exists among them. A detailed knowledge of the morphological and molecular characters of P. colocasiae will help in developing suitable control strategies against the taro leaf blight disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baskarathevan, J., Jaspers, M. V., Jones, E. E., Cruickshank, R. H., & Ridgway, H. J. (2012). Genetic and pathogenic diversity of Neofusicoccum parvum in New Zealand vineyards. Fungal Biology, 116, 276–288.

    Article  CAS  PubMed  Google Scholar 

  • Butler, E. J., & Kulkarni, G. S. (1913). Colocasia blight caused by Phytophthora colocasiae Rac. Memoirs of the Department of Agriculture in India, 5, 233–259.

    Google Scholar 

  • Collard, B. C. Y., & Mackill, D. J. (2009). Start Codon Targeted (SCOT) polymorphism: A simple novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology, 27, 86–93.

    Article  CAS  Google Scholar 

  • Cooke, D. E. L., & Duncan, J. M. (1997). Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycological Research, 101, 667–677.

    Article  CAS  Google Scholar 

  • Costamilan, L. M., Clebsch, C. C., Soares, R. M., Seixas, C. D. S., Godoy, C. V., & Dorrance, A. E. (2012). Pathogenic diversity of Phytophthora sojae pathotypes from Brazil. European Journal Plant Pathology. doi:10.1007/s10658-012-0128-9.

    Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gisi, U., & Cohen, Y. (1996). Resistance to phenylamide fungicides: case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology, 34, 549–572.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, S. B. (1997). The population genetics of Phytophthora. Phytopathology, 97, 462–473.

    Article  Google Scholar 

  • Goodwin, S. B., Sujkowski, L. S., & Fry, W. E. (1995). Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytopathology, 85, 669–667.

    Article  Google Scholar 

  • Granke, L. L., Quesada-Ocampo, L. M., & Hausbeck, M. K. (2011). Variation in phenotypic characteristics of Phytophthora capsici isolates from a worldwide collection. Plant Disease, 95, 1080–1088.

    Article  Google Scholar 

  • Institute, S. A. S. (2008). SAS/STAT 9.2 User’s Guide. Cary, NC, USA: SAS Institute.

  • Jackson, G. V. H., Gollifer, D. E., & Newhook, F. J. (1980). Studies on the taro leaf blight fungus Phytophthora colocasiae in the Solomon Islands: control by fungicides and spacing. Annals of Applied Biology, 96, 1–10.

    Article  CAS  Google Scholar 

  • Ko, W. H. (1979). Mating type distribution of Phytophthora colocasiae in the island of Hawaii. Mycologia, 71, 434–437.

    Article  Google Scholar 

  • Lambert, D. H., & Salas, B. (1994). Metalaxyl insensitivity of Phytophthora erythroseptica isolates causing pink rot of potato in Maine. Plant Disease, 78, 1010.

    Article  Google Scholar 

  • Lebot, V., Herail, C., Gunua, T., Pardales, J., Prana, M., Thongjiem, M., et al. (2003). Isozyme and RAPD variation among Phytophthora colocasiae isolates from South East Asia and the Pacific. Plant Pathology, 52, 303–313.

    Article  CAS  Google Scholar 

  • Mahto, N. B., Gurung, S., Nepal, A., & Adhikari, T. B. (2012). Morphological, pathological and genetic variations among isolates of Cochliobolus sativus from Nepal. European Journal of Plant Pathology, 133, 405–417.

    Article  Google Scholar 

  • Mantel, N. (1967). The detection of disease clustering and generalized regression approach. Cancer Research, 27, 209–220.

    CAS  PubMed  Google Scholar 

  • McDonald, B. A., & Linde, C. C. (2002). Pathogen population genetics, evolutionary potential and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A. K., Sharma, K., & Misra, R. S. (2010). Isozyme and PCR-based genotyping of epidemic Phytophthora colocasiae associated with taro leaf blight. Archives of Phytopathology and Plant Protection, 43, 1367–1380.

    Article  CAS  Google Scholar 

  • Misra, R. S., & Chowdhury, S. R. (1997). Phytophthora leaf blight disease in taro. Technical Bulletin Series 21, C.T.C.R.I. (ICAR), Trivandrum, India.

  • Misra, R. S., Mishra, A. K., Sharma, K., Jeeva, M. L., & Hegde, V. (2011). Characterisation of Phytophthora colocasiae isolates associated with leaf blight of taro in India. Archives of Phytopathology and Plant Protection, 44, 581–591.

    Article  Google Scholar 

  • Misra, R. S., Sharma, K., & Mishra, A. K. (2008). Phytophthora leaf blight of taro (Colocasia esculenta) – a review. The Asian and Australasian Journal of Plant Science and Biotechnology, 2, 55–63.

    Google Scholar 

  • Nath, V. S., Sankar, M. S., Hegde, V. M., Jeeva, M. L., Misra, R. S., & Veena, S. S. (2013a). Molecular evidence supports hypervariability in Phytophthora colocasiae associated with leaf blight of taro. European Journal of Plant Pathology, 136, 483–494.

    Article  Google Scholar 

  • Nath, V. S., Sankar, M. S., Hegde, V. M., Jeeva, M. L., Misra, R. S., Veena, S. S., et al. (2013b). Genetic diversity of Phytophthora colocasiae isolates in India based on AFLP analysis. 3 Biotech, 3, 297-305.

  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA, 76, 5269–5273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parra, G., & Ristaino, J. B. (2001). Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease, 85, 1069–1075.

    Article  CAS  Google Scholar 

  • Raciborski, M. (1900).Parasitische Algen und Pilze, Java’s (Java’s Parasitic Algae and Fungi). I. Batavia. (Cited in Waterhouse1970a under P. colocasiae).

  • Rampersad, S. N. (2011). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Disease, 95, 1244–1254.

    Article  Google Scholar 

  • Reuveni, M., Eyal, H., & Cohen, Y. (1980). Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Disease, 64, 1108–1109.

    Article  Google Scholar 

  • Rohlf, F. J. (1993). Contributions to morphometrics: Relative warp analysis and an example of its application to mosquito wings. pp. 131–159. In L. F. Marcus, E. Bello, and A. García-Valdecasas (Eds.) Monografias del Museo Nacional de Ciencias Naturales. Madrid, Spain.

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Schluter, P. M., & Harris, S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 6, 569–572.

    Article  Google Scholar 

  • Silvar, C., Merino, F., & Diaz, J. (2006). Diversity of Phytophthora capsici in Northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease, 90, 1135–1142.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truong, N. V., Liew, E. C. Y., & Burgess, L. W. (2010). Characterisation of Phytophthora capsici isolates from black pepper in Vietnam. Fungal Biology, 114, 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, J. L., & Fullerton, R. A. (2007). Mating types of Phytophthora colocasiae from the Pacific region, India and South-east Asia. Australasian Plant Disease Notes, 2, 111–112.

    Article  Google Scholar 

  • Van de Peer, Y., & Dewachter, R. (1994). Treecon for Windows—A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences, 10, 569–570.

    PubMed  Google Scholar 

  • Van Hemelrijck, W., Debode, J., Heungens, K., Maes, M., & Creemers, P. (2010). Phenotypic and genetic characterization of Colletotrichum isolates from Belgian strawberry fields. Plant Pathology, 59, 853–861.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315–322. In M. A. Innes, D. H. Gefland, J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications. SanDiego, CA, USA: Academic.

    Google Scholar 

  • Yeh, F. C., Boyle, T., Yang, R., Ye, Z., & Xiyan, J. M. (1997). Microsoft window-based freeware for population genetic analysis (POPGENE version 1.31). Edmonton, Canada: University of Alberta and Centre for International Forestry Research.

    Google Scholar 

Download references

Acknowledgments

The funding provided for conducting the research work by the Indian Council of Agricultural Research, New Delhi, under IISR outreach program, is gratefully acknowledged. The authors thank the reviewer’s for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayaka Mahabaleswar Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, V.S., Hegde, V.M., Jeeva, M.L. et al. Morphological, pathological and molecular characterization of Phytophthora colocasiae responsible for taro leaf blight disease in India. Phytoparasitica 43, 21–35 (2015). https://doi.org/10.1007/s12600-014-0422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-014-0422-5

Keywords

Navigation