Skip to main content
Log in

Development of molecular markers and probes based on TEF-1α, β-tubulin and ITS gene sequences for quantitative detection of Fusarium oxysporum f. sp. ciceris by using real-time PCR

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Fusarium wilt (Fusarium oxysporum f. sp. ciceris) causes significant yield losses in chickpea worldwide. Faster, reliable and more specific molecular detection techniques were developed for the detection of Fusarium oxysporum f. sp. ciceris (Foc). The sequences obtained from multiple alignments of target genes, namely, translation elongation factor-1α (TEF-1α), β-tubulin, and internal transcribed spacer (ITS), were used to design Foc-specific markers/probes. One set of TEF-1α-based molecular marker, namely, SPα-F and R, two sets of β-tubulin-based markers, namely, SPβ1-F and R, and SPβ2-F and R, and one set of ITS gene, namely, SPT-F and R, were developed for the detection and quantification of Foc from diverse samples. The specificity and sensitivity of the designed molecular markers were evaluated through conventional and real-time PCR assays which differentiated the Foc from closely related species of Fusarium and other plant pathogens. In conventional PCR, the minimum detection limits of the markers ranged from 12.5 pg to 100 pg for genomic DNA of Foc and 0.5 ng to 10 ng for infected plant samples. In real-time PCR assay, the minimum detection limits of the markers ranged from 0.001 pg to 0.25 pg for genomic DNA of Foc and from 0.04 pg to 1.5 pg for the infected plant samples. Thus, the markers designed in the present study were found to be specific for Foc and can be used consistently for the detection and identification of Foc isolates. The probes developed from the two sets of markers, namely, SPα and SPβ2, also showed specificity with Foc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arif, M., Chawla, S., Zaidi, N. W., Rayar, J. K., Variar, M., & Singh, U. S. (2012). Development of specific primers for genus Fusarium and F. solani using rDNA sub-unit and transcription elongation factor (TEF-1α) gene. African Journal of Biotechnology, 11, 444–447.

    CAS  Google Scholar 

  • Baayen, R. P. (2000). Diagnosis and detection of host-specific forms of Fusarium oxysporum. European Plant Protection Organisation Bulletin, 30, 489–491.

    Google Scholar 

  • Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A., et al. (2000). Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology, 90, 891–900.

    Article  CAS  PubMed  Google Scholar 

  • Bellete, B., Flori, P., Hafid, J., Raberin, H., & Tran Manh Sung, R. (2003). Influence of the quantity of nonspecific DNA and repeated freezing and thawing of samples on the quantification of DNA by the Light Cycler. Journal of Microbiological Methods, 55, 213–19.

    Article  CAS  PubMed  Google Scholar 

  • Black, J. A., Dean, T. R., Foarde, K., & Menetrez, M. (2008). Detection of Stachybotrys chartarum using rRNA, tri5, and β-tubulin primers and determining their relative copy number by real-time PCR. Mycological Research, 112, 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Bogale, M., Wingfield, B. D., Wingfield, M. J., & Steenkamp, E. T. (2007). Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiology Letters, 271, 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Boonham, N., Glover, R., Tomlinson, J., & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. European Journal of Plant Pathology, 121, 355–363.

    Article  CAS  Google Scholar 

  • Chung, W. H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T., & Yoshimatsu, H. (2008). Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. Journal of General Plant Pathology, 74, 364–374.

    Article  CAS  Google Scholar 

  • Dubey, S. C., & Singh, S. R. (2008). Virulence analysis and oligonucleotide fingerprinting to detect diversity among Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia, 165, 389–406.

    Article  CAS  PubMed  Google Scholar 

  • Dubey, S. C., & Suresh, M. (2006). Randomly amplified polymorphic DNA markers for Trichoderma species and antagonism against Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Journal of Phytopathology, 154, 663–669.

    Article  CAS  Google Scholar 

  • Dubey, S. C., Tripathi, A., & Singh, S. R. (2010). ITS – RFLP fingerprinting and molecular markers for detection of Fusarium oxysporum f. sp. ciceris. Folia Microbiologica, 55, 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, S. G., O’Callaghan, J., & Dobson, A. D. W. (2002). PCR-based detection and quantification of mycotoxigenic fungi. Mycological Research, 11, 1005–1025.

    Article  Google Scholar 

  • Gayatri, G., Barve, M., Giri, A., & Gupta, V. (2009). Identification of Indian pathogenic races of Fusarium oxysporum f. sp. ciceris with gene specific, ITS and random markers. Mycologia, 101, 484–495.

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 4, 95–98.

    Google Scholar 

  • Haware, M. P., & Nene, Y. L. (1982). Races of Fusarium oxysporum f. sp. ciceri. Plant Disease, 66, 809–810.

    Article  Google Scholar 

  • Jimenez-Diaz, R. M., & Jimenez-Gasco, M. M. (2003). Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, IA, 5, and 6. Phytopathology, 93, 200–209.

    Article  PubMed  Google Scholar 

  • Jimenez-Gasco, M. M., Milgroom, M. G., & Jimenez-Diaz, R. M. (2002). Gene genealogies support Fusarium oxysporum f. sp. ciceris as a monophyletic group. Plant Pathology, 51, 72–77.

    Article  CAS  Google Scholar 

  • Lin, Y. H., Su, C. C., Chao, C. P., Chen, C. Y., Chang, C. J., Huang, J. W., et al. (2013). A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 135, 395–405.

    Article  CAS  Google Scholar 

  • Martin, C., Roberts, D., Weide, M. V. D., Rossau, R., Jannes, G., Smith, T., et al. (2000). Development of a PCR-based line probe assay for identification of fungal pathogens. Journal of Clinical Microbiology, 38, 3735–3742.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mesapogu, S., Babu, B. K., Bakshi, A., Reddy, S. S., & Saxena, S. (2011). Rapid detection and quantification of Fusarium udum in soil and plant samples using real time PCR. Journal of Plant Pathology and Microbiology, 2, 107.

    Article  Google Scholar 

  • Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolaisena, M., Supronienb, S., Nielsena, L. K., Lazzaroa, I., Spliida, N. H., & Justesen, A. F. (2009). Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods, 76, 234–240.

    Article  Google Scholar 

  • O'Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.

    Article  PubMed  Google Scholar 

  • Scauflaire, J., Godet, M., Gourgue, M. E., Lienard, C., & Munaut, F. (2012). A multiplex real-time PCR method using hybridization probes for the detection and the quantification of Fusarium proliferatum, F. subglutinans, F. temperatum, and F. verticillioides. Fungal Biology, 116, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K. B., & Dahiya, B. S. (1973). Breeding for wilt resistance in chickpea. In: Proceedings of the Symposium on Problems and Breeding for Wilt Resistance in Bengal Gram at IARI (pp. 13-14). New Delhi, India.

  • Vitale, S., Santori, A., Wajnberg, E., Castagnone-Sereno, P., Luongo, L., & Belisario, A. (2011). Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Phytopathology, 101, 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Waalwijk, C., Van der Heide, R., De Vries, I., Van der Lee, T., Schoen, C., Costrel-de Corainville, G., et al. (2004). Quantitative detection of Fusarium species in wheat using TaqMan. European Journal of Plant Pathology, 110, 481–494.

    Article  CAS  Google Scholar 

  • Williams, K. J., Dennis, J. I., Smyl, C., & Wallwork, H. (2002). The application of species-specific assays based on the polymerase chain reaction to analyze Fusarium crown rot of durum wheat. Australasian Plant Pathology, 31, 119–127.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Indian Council of Agricultural Research, New Delhi (India) for financial support through outreach project (Divisional Publication No.1/13), and to Mr. Chacko Thomas, Former Editor (English) of the IARI, New Delhi, for correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil C. Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, S.C., Priyanka, K. & Upadhyay, B.K. Development of molecular markers and probes based on TEF-1α, β-tubulin and ITS gene sequences for quantitative detection of Fusarium oxysporum f. sp. ciceris by using real-time PCR. Phytoparasitica 42, 355–366 (2014). https://doi.org/10.1007/s12600-013-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0369-y

Keywords

Navigation