Skip to main content
Log in

Digestive proteases of Papilio demoleus : Compartmentalization and characterization

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Digestive proteolytic activities were studied in the larval midgut of Papilio demoleus by using azocasein, specific substrates and inhibitors regarding enzymatic allocation in the alimentary canal. The highest proteolytic activity was found in the midgut rather than foregut and hindgut that highest proteolytic activity was observed in soluble fraction. All specific proteases were almost equally distributed in both the anterior and posterior midgut except for trypsin- and chymotrypsin-like proteases, which showed the highest activity in the anterior midgut. Two peaks were observed in alkaline and acidic pHs when general proteolytic activities were assayed using azocasein in soluble and membrane-bound fractions. Specific substrates revealed the presence of trypsin-like, chymotrypsin-like, elastase, cathepsins B and L as well as two exopeptidases. These findings were confirmed using specific inhibitors including PMSF, TLCK, TPCK, SBTI, cystatin, DTT, E-64, EDTA and phenanthroline. Determination and characterization of the insect’s digestive proteases will enable development of pest control by designing protease inhibitors. This procedure will help us to designate an efficient pest control method with the lowest impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, Z., Saleemuddin, M., & Siddiqui, M. (1980). Purification and characterisation of three alkaline proteases from the larvae of army worm Spodoptera litura. Insect Biochemistry, 10, 667–673.

    Article  CAS  Google Scholar 

  • Ajamhassani, M., Zibaee, A., Sendi, J. J., Askary, H., & Farrar, N. (2012). Proteolytic activity in the midgut of the Crimson Speckled moth, Utethsia pulchella L. (Lepidoptera: Arctiidae). Journal of Plant Protection Research, 52, 368–373.

    Article  Google Scholar 

  • Anwar, A., & Saleemudin, M. (2002). Purification and characterization of a digestive alkaline protease from the larvae of Spilosoma oblique. Archives of Insect Biochemistry and Physiology, 51, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Atwal, A. S. (1979). Agricultural pests of India and South-East Asia. Delhi, India: Kalyani Publishers.

    Google Scholar 

  • Badawi, A. (1981). Studies on some aspects of the biology and ecology of the citrus butterfly Papilio demoleus L. in Saudi Arabia (Papilionidae: Lepidoptera). Zeitschrift für Angewandte Entomologie, 91, 286–292.

    Article  Google Scholar 

  • Barrett, A. J., & Rawling, N. D. (1991). Types and families of endopeptidases. Biochemical Transactions, 19, 707–715.

    CAS  Google Scholar 

  • Bernardi, B., Tedeschi, G., & Ronchi, S. (1996). Isolation and some molecular properties of a trypsin-like enzyme from larvae of European corn borer Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). Insect Biochemistry and Molecular Biology, 26, 883–889.

    Article  CAS  PubMed  Google Scholar 

  • Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012a). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87, 803–812.

    Article  CAS  PubMed  Google Scholar 

  • Biondi, A., Mommaerts, V., Smagghe, G., Viñuela, E., Zappalà, L., & Desneux, N. (2012b). The non-target impact of spinosyns on beneficial arthropods. Pest Management Science, 68, 1523–1536.

    Article  CAS  PubMed  Google Scholar 

  • Caldeira, W., Dias, A. B., Terra, W. R., & Ribeiro, A. F. (2007). Digestive enzyme compartmentalization and recycling and sites of absorption and secretion along the midgut of Dermestes maculatus (Coleoptera) larvae. Archives of Insect Biochemistry and Physiology, 64, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, R. F. (1998). The insects: Structure and function (4th ed.). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Chougle, N. P., Doyle, E., Fitches, E., & Gatehouse, J. A. (2008). Biochemical characterization of midgut digestive proteases from Mamestra brassicae (Cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz trypsin inhibitor (SKTI) in feeding assays. Journal of Insect Physiology, 54, 563–572.

    Article  Google Scholar 

  • Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.

    Article  CAS  PubMed  Google Scholar 

  • Ebeling, W. (1959). Subtropical fruit pests. Berkeley, CA, USA: Division of Agricultural Science, University of California.

    Google Scholar 

  • Elpidina, E. N., Vinokurov, K. S., Gromenko, V. A., Rudenskaya, Y. A., Dunaevsky, Y. E., & Zhuzhikov, D. P. (2001). Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Archives of Insect Biochemistry and Physiology, 48, 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Foard, D. E., Murdock, L. L., & Dunn, P. E. (1983). Engineering of crop plants with resistance to herbivores and pathogens: An approach using primary gene products. Plant Molecular Biology, 2, 223–233.

    Google Scholar 

  • Garcia-Carreno, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate–gel electrophoresis for composition and molecular weight of proteinases or proteinaceous protease inhibitors. Analytical Biochemistry, 214, 61–69.

    Google Scholar 

  • Gatehouse, A. M. R., Norton, E., Davison, G. M., Babbe, S. M., Newell, C. A., & Gatehouse, J. A. (1999). Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant protease inhibitors in vitro and in vivo. Journal of Insect Physiology, 45, 545–558.

    Article  CAS  PubMed  Google Scholar 

  • Hegedus, D., Baldwin, D., O’Grady, M., Braun, L., Gleddie, S., Sharpe, A., et al. (2003). Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: Characterization, cDNA cloning, and expressed sequence tag analysis. Archives of Insect Biochemistry and Physiology, 53, 30–47.

    Article  CAS  PubMed  Google Scholar 

  • Hilder, V. A., & Boulter, D. (1999). Genetic engineering of crop plants for insect resistance - a critical review. Crop Protection, 18, 177–191.

    Article  Google Scholar 

  • Hilder, V. A., Gatehouse, A. M. R., & Boulter, D. (1993). Transgenic plants conferring insect tolerance: protease inhibitor approach (pp. 317–338). In S. D. Inkung & R. Wu (Eds.), Transgenic plants. London, UK: Academic Press.

    Google Scholar 

  • Homziak, T., Nicholas, T., & Homziak, J. (2006). Papilio demoleus (Lepidoptera: Papilionidae): A new record for the United States, Commonwealth of Puerto Rico. Florida Entomologist, 89, 485–488.

    Article  Google Scholar 

  • Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608.

    Article  CAS  Google Scholar 

  • Jongsma, M. A., Stiekema, W. J., & Bosch, D. (1996). Combating inhibitor insensitive proteases of insect pests. Trends in Biotechnology, 14, 331–333.

    Article  CAS  Google Scholar 

  • Josephrajkumar, A., Chakrabarty, R., & Thomas, G. (2006). Midgut proteases of the cardamom shoot and capsule borer Conogethes punctiferalis (Lepidoptera: Pyralidae) and their interaction with aprotinin. Bulletin of Entomological Research, 96, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Koiwa, R. E., Shade, K., Zhu-Satzman, L., Subramanian, L. L., Murdock, S. S., Nielsen, R. A., et al. (1998). Phage display selection can differentiate insecticidal activity of soybean cystatins. The Plant Journal, 14, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, T. B. (1984). The zoogeographical composition and distribution of the Arabian butterflies (Lepidoptera: Rhopalocera). Journal of Biogeography, 11, 119–158.

    Article  Google Scholar 

  • Laskowski, J. R., & Kato, M. (1980). Protein inhibitors of proteinases. Annual Review of Botany, 49, 593–626.

    CAS  Google Scholar 

  • Lee, M. J., & Anstee, J. H. (1995). Endoproteases from the midgut of larval Spodoptera littoralis include a chymotrypsin-like enzyme with an extended binding site. Insect Biochemistry and Molecular Biology, 25, 49–61.

    Article  CAS  Google Scholar 

  • Lorito, M., Brodway, R. M., Hayes, C. K., Woo, S. L., Noviello, C., Williams, D. L., et al. (1994). Proteinase inhibitors from plants as a novel class of fungicide. Molecular Plant-Microbe Interactions, 7, 525–527.

    Article  CAS  Google Scholar 

  • Marchetti, S., Chiaba, C., Chisa, F., Bandiera, A., & Pitotti, A. (1998). Isolation and partial characterization of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochemistry and Molecular Biology, 28, 449–458.

    Article  CAS  Google Scholar 

  • Mehrabadi, M., & Bandani, A. R. (2011). Secretion and formation of perimicrovilar membrane in the digestive system of the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) in response to feeding. Archives of Insect Biochemistry and Physiology, 78, 190–200.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, D., PourAbad, R. F., Rashidi, M. R., & Mohammadi, S. A. (2010). Activity and some properties of Helicoverpa armigera Hübner and Spodoptera exigua Hübner (Lep.: Noctuidae) midgut protease. Munis Entomology and Zoology, 5, 697–706.

    Google Scholar 

  • Murdock, L. L., Brookhart, G., Dunn, P. E., Foard, D. E., Kelley, S., Kitch, L., et al. (1987). Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology. B, 87, 783–787.

    Google Scholar 

  • Oppert, B. (1999). Protease interactions with Bacillus thuringiensis insecticidal toxins. Archives of Insect Biochemistry and Physiology, 42, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Reek, G., Oppert, B., Denton, M., Kanost, M., Baker, J., & Kramer, K. (1999). Insect proteinases (pp. 125–148). In V. Turk (Ed.), Proteases: new perspectives. Basel, Switzerland: Birkhauser-Verlag

    Chapter  Google Scholar 

  • Ryan, C. A. (1981). Proteinase inhibitors. New York, NY: Academic Press.

    Google Scholar 

  • Saadati, F., & Bandani, A. R. (2011). Effects of serine protease inhibitors on growth and development and digestive serine proteinases of the Sunn pest, Eurygaster integriceps. Journal of Insect Science, 11, 72. available online: insectscience.org/11.72.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaaya, E., Kostyukovski, M., Eilberg, J., & Sukprakarn, C. (1997). Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research, 33, 7–15.

    Article  CAS  Google Scholar 

  • Srinivasan, A., Giri, A., Harsulkar, A. M., Gatehouse, J. A., & Gupta, V. S. (2005). A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on pod borer (Helicoverpa armigera) larvae. Plant Molecular Biology, 57, 359–374.

    Article  CAS  PubMed  Google Scholar 

  • Teo, L. H., & Woodring, J. P. (1985). Digestive enzymes in the house cricket Acheta domesticus with special reference to amylase. Comparative Biochemistry and Physiology. B, 82, 871–877.

    Google Scholar 

  • Terra, W. R., & Ferreira, C. (1983). Further evidence that enzymes involved in the final stages of digestion by Rhynchosciara americana do not enter the endoperitrophic space. Insect Biochemistry, 13, 143–150.

    Article  CAS  Google Scholar 

  • Terra, W. R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology. B, 109, 1–62.

    Google Scholar 

  • Terra, W. R., & Ferreira, C. (2005). Biochemistry of digestion (pp. 171–224). In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive molecular insect science. vol. 3. San Diego, CA, USA: Elsevier.

    Chapter  Google Scholar 

  • Terra, W. R., Ferreira, C., Jordao, B. P., & Dillon, R. J. (1996). Digestive enzymes (pp. 153–193). In M. J. Lehane & P. F. Billingsley (Eds.), Biology of the insect midgut. London, UK: Chapman and Hall.

    Chapter  Google Scholar 

  • Weisenburger, D. D. (1993). Human health effects of agrichemicals use. Human Pathology, 24, 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Wyniger, R. (1962). Pests of crops in warm climates and their control. Basel, Switzerland: Verlag für Recht und Gesellschaft.

    Google Scholar 

  • Zibaee, A. (2012). Proteolytic profile in the larval midgut of Chilo suppressalis Walker (Lepidoptera: Crambidae). Entomological Research, 42, 142–150.

    Article  CAS  Google Scholar 

  • Zibaee, A., Bandani, A. R., & Ramzi, S. (2009). Characterization of α- and β-glucosidases in midgut and salivary glands of Chilo suppressalis Walker (Lepidoptera: Pyralidae), rice striped stem borer. Comptes Rendus Biologies, 332, 633–641.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant of the Elite Foundation of Iran and University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Zibaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazdani, E., Zibaee, A. & Sendi, J.J. Digestive proteases of Papilio demoleus : Compartmentalization and characterization. Phytoparasitica 42, 121–133 (2014). https://doi.org/10.1007/s12600-013-0323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0323-z

Keywords

Navigation