Skip to main content

Advertisement

Log in

Influence of different fertilization regimes on plant-parasitic nematodes in the black soil region of Northeast China

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Plant-parasitic nematodes can cause serious plant diseases and adversely affect crop production. We investigated the temporal and vertical dynamics of plant-parasitic nematodes in northeast China to determine if long-term fertilizer application suppresses the population of plant-parasitic nematodes and influences their vertical distribution in the black soil region. The long-term fertilizer application lasted for 14 years, and included three treatments: pig manure combined with chemical fertilizer (MCF), chemical fertilizer (urea and ammonium phosphate, CF), and no fertilizer (NF). A 3-year corn-wheat-soybean rotation was grown on the field site, soil samples were obtained in the corn phase and nematodes were extracted, identified and counted. Six plant-parasitic nematode genera with relative abundance over 0.1% were found in this study. Heterodera was the dominant genus in all three fertilizer treatments, and its relative abundance was highest in NF (45.4%) and lowest in MCF (32.8%). Fertilizer application had a significant effect on abundance of total soil nematodes but not on either plant-parasitic nematodes or Heterodera. Significant differences in the abundance of total soil nematodes, plant-parasitic nematodes and Heterodera were observed among soil depths and interaction of fertilizer × soil depth. Total soil nematodes were mainly distributed in the 0–20 cm soil layer, and plant-parasitic nematodes and Heterodera were mostly distributed in the 10–30 cm soil layer. Fertilizer application did not show a significant effect on plant-parasitic nematodes or Heterodera at any of the sampling depths from 0 to 80 cm. The results indicated that fertilizer has no effective control on plant-parasitic nematodes when dominant genera and their respective plant hosts exist in relatively high abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15, 37–47.

    Article  Google Scholar 

  • Abdollahi, M. (2010). Plant-parasitic nematodes associated with wheat in Kohgiluyeh and Boyer-Ahmad Province. Iranian Journal of Agricultural Research, 48, 131–136.

    Google Scholar 

  • Akhtar, M. (1999). Plant growth and nematode dynamics in response to soil amendments with neem products, urea and compost. Bioresource Technology, 69, 181–183.

    Article  CAS  Google Scholar 

  • Akhtar, M., & Alam, M. M. (1993). Utilization of waste materials in nematode control: a review. Bioresource Technology, 4, 1–7.

    Article  Google Scholar 

  • Akhtar, M., & Mahmood, I. (1996). Organic soil amendment in relation to nematode management with particular reference to India. Integrated Pest Management Reviews, 1, 201–215.

    Article  Google Scholar 

  • Anon. (2011). Species descriptions, pictures, original drawings. http://nematode.unl.edu/konzlistbutt.htm. Accessed 5 April 2011.

  • Boag, B., Brown, D. J. F., & Topham, P. B. (1987). Vertical and horizontal distribution of virus vector nematodes and implications for sampling procedures. Nematologica, 33, 83–96.

    Article  Google Scholar 

  • Bulluck, L. R., Barker, K. R., & Ristaino, J. B. (2002). Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Applied Soil Ecology, 21, 233–250.

    Article  Google Scholar 

  • Castagnone-Sereno, P., & Kermarrec, A. (1991). Invasion of tomato roots and reproduction of Meloidogyne incognita as affected by raw sewage sludge. Journal of Nematology, 23, 724–728.

    PubMed  CAS  Google Scholar 

  • Crow, W. T., Guertal, E. A., & Rodriguez-Kabana, R. (1996). Responses of Meloidogyne arenaria and M. incognita to green manures and supplemental urea in glasshouse culture. Journal of Nematology, 28, 648–654.

    PubMed  CAS  Google Scholar 

  • De Waele, D., & Jordaan, E. M. (1988). Plant-parasitic nematodes on field crops in South Africa. 1. Maize. Revue de Nématologie, 11, 65–74.

    Google Scholar 

  • Desaeger, J., & Rao, M. R. (2001). The potential of mixed covers of Sesbania, Tephrosia and Crotalaria to minimize nematode problems on subsequent crops. Field Crops Research, 70, 111–125.

    Article  Google Scholar 

  • Devran, Z., & Söğüt, M. A. (2010). Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica, 38, 245–251.

    Article  Google Scholar 

  • Hugon, R., Ganry, J., & Berthe, G. (1984). Dynamique de population du nématode Radopholus similis en fonction du stade de développement du bananier et le climat. Fruits, 39, 251–253.

    Google Scholar 

  • Kashaija, I. N., McIntyre, B. D., Ssali, H., & Kizito, F. (2004). Spatial distribution of roots, nematode populations and root necrosis in highland banana in Uganda. Nematology, 6, 7–12.

    Article  Google Scholar 

  • Katsantonis, D., Hillocks, R. J., & Gowen, S. (2003). Comparative effect of root-knot nematode on severity of Verticillium and Fusarium wilt in cotton. Phytoparasitica, 31, 154–162.

    Article  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Phytopathology, 38, 423–441.

    Article  CAS  Google Scholar 

  • Kurppa, S., & Vrain, T. C. (1985). Penetration and feeding behavior of Pratylenchus penetrans in strawberry roots. Revue de Nematologie, 8, 273–276.

    Google Scholar 

  • Li, Q., Jiang, Y., Liang, W., Lou, Y., Zhang, E., & Liang, C. (2010). Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 46, 111–118.

    Article  Google Scholar 

  • Liang, W., Zhang, W., Li, W., & Duan, Y. (2001). Effect of chemical fertilizer on nematode community composition and diversity in the Black Soil Region. Biodiversity Science, 9, 237–240.

    Google Scholar 

  • Liang, W., Zhang, X., Li, Q., Jiang, Y., Ou, W., & Neher, D. A. (2005). Vertical distribution of bacterivorous nematodes under different land uses. Journal of Nematology, 37, 254–258.

    PubMed  Google Scholar 

  • Liu, W., Xu, Y., & Pan, F. (2011). Effects of fertilization on plant parasitic nematode communities and vertical distribution in maize. Crops, 2, 13–16.

    CAS  Google Scholar 

  • McSorley, R., Ozores-Hampton, M., Stansley, P. A., & Conner, J. M. (1999). Nematode management, soil fertility, and yield in organic vegetable production. Nematropica, 29, 205–213.

    Google Scholar 

  • Meng, F., Liang, W., Ou, W., Jiang, Y., Li, Q., & Wen, D. (2005). Vertical distribution of plant nematodes in an aquic brown soil under different land uses. Journal of Forestry Research, 16, 39–42.

    Article  CAS  Google Scholar 

  • Mian, I. M., & Rodriguez-Kabana, R. (1982). Soil amendments with oil cakes and chicken litter for control of Meloidogyne arenaria. Nematropica, 12, 215–220.

    Google Scholar 

  • Muller, R., & Gooch, P. S. (1982). Organic amendments in nematode control: an examination of the literature. Nematropica, 12, 319–326.

    Google Scholar 

  • Mulrooney, R. P. (2004). Soybean cyst nematode. ag.udel.edu/extension/horticulture/pdf/pp/pp-02.pdf. Accessed 2 May 2011.

  • Nahar, M. S., Grewal, P. S., Miller, S. A., Stinner, D., Stinner, B. R., Kleinhenz, M. D., et al. (2006). Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology, 34, 140–151.

    Article  Google Scholar 

  • Norton, D. C., & Niblack, T. L. (1991). Biology and ecology of nematodes. In W. R. Nickle (Ed.), Manual of agricultural nematology (pp. 47–71). New York, NY: Marcel Dekker.

    Google Scholar 

  • Ou, W., Liang, W., Jiang, Y., Li, Q., & Wen, D. (2005). Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49, 139–148.

    Article  Google Scholar 

  • Pacumbaba, R. P., Brown, G. F., & Pacumbaba, R. O. (1997). Effect of fertilizers and rates of application on incidence of soybean diseases in northern Alabama. Plant Disease, 81, 1459–1460.

    Article  Google Scholar 

  • Pandey, R. (2005). Management of Meloidogyne incognita in Artemisia pallens with bio-organics. Phytoparasitica, 33, 304–308.

    Article  Google Scholar 

  • Ploeg, A. T. (1998). Horizontal and vertical distribution of Longidorus africanus in a Bermudagrass field in the Imperial Valley, California. Journal of Nematology, 30, 592–598.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Kabana, R., Morgan-Jones, G., & Chet, I. (1987). Biological control of plant nematodes: soil amendments and microbial antagonists. Plant and Soil, 10, 237–247.

    Article  Google Scholar 

  • Shepherd, A. M. (1970). Preparation of nematodes for electron microscopy. In J. F. Southey (Ed.), Laboratory methods for work with plant and soil nematodes (pp. 88–95). London, UK: HMSO.

    Google Scholar 

  • Siddiqi, M. R. (1986). Tylenchida: parasites of plants and insects. Slough, UK: CAB International.

    Google Scholar 

  • Siddiqui, Z. A., & Akhtar, M. S. (2008). Effects of organic wastes, Glomus intraradices and Pseudomonas putida on the growth of tomato and on the reproduction of the root-knot nematode Meloidogyne incognita. Phytoparasitica, 36, 460–471.

    Article  Google Scholar 

  • Smiley, R. (2005). Plant-parasitic nematodes affecting wheat yield in the Pacific northwest. Corvallis, OR, USA: Oregon State University Extension Service.

    Google Scholar 

  • Spiegel, Y., Cohn, E., & Kafkafi, U. (1982). The influence of ammonium and nitrate nutrition of tomato plants on parasitism by the root-knot nematode. Phytoparasitica, 10, 33–40.

    Article  CAS  Google Scholar 

  • Thoden, T. C., Korthals, G. W., & Termorshuizen, A. J. (2011). Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematology, 13, 133–153.

    Article  Google Scholar 

  • Verschoor, B. C., de Goede, R. G. M., de Hoop, J. W., & de Vries, F. W. (2001). Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands. Pedobiologia, 45, 213–233.

    Article  Google Scholar 

  • Villate, L., Fievet, V., Hanse, B., Delemarre, F., Plantard, O., Esmenjaud, D., et al. (2008). Spatial distribution of the dagger nematode Xiphinema index and its associated Grapevine fanleaf virus in French vineyard. Phytopathology, 98, 942–948.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K. H., McSorley, R., Marshall, A., & Gallaher, R. N. (2006). Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Applied Soil Ecology, 31, 186–198.

    Article  Google Scholar 

  • Wang, K. H., Sipes, B. S., & Schmitt, D. P. (2002). Crotalaria as a cover crop for nematode management: a review. Nematropica, 32, 35–57.

    CAS  Google Scholar 

  • Weischer, B., & Almeida, M. T. M. (1995). Ecology of longidorid nematodes. Russian Journal of Nematology, 3, 9–21.

    Google Scholar 

  • Wyss, U. (1970). Zur Toleranz wandernder Wurzelnematoden gegenüber zunehmender Austrocknung des Bodens und hohen osmotischen Drücken. Nematologica, 16, 63–73.

    Article  Google Scholar 

  • Yeates, G. W. (1982). Variation of pasture nematode populations over thirty-six months in a summer dry silt loam. Pedobiologia, 24, 329–346.

    Google Scholar 

  • Yeates, G. W. (1984). Variation in pasture nematode populations over thirty-six months in a summer moist silt loam. Pedobiologia, 27, 207–219.

    Google Scholar 

Download references

Acknowledgments

The study was financially supported by National Natural Scientific Youth fund of China (3100025), National Natural Science Foundation of China (30971900), and Key Laboratory fund of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (2011 ZKHT-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, F., Xu, Y., McLaughlin, N.B. et al. Influence of different fertilization regimes on plant-parasitic nematodes in the black soil region of Northeast China. Phytoparasitica 41, 355–363 (2013). https://doi.org/10.1007/s12600-013-0295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0295-z

Keywords

Navigation