Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker)

Abstract

Gut bacteria of fruit fly, Bactrocera tau (Walker) (Diptera: Tephritidae), were isolated and the isolates attractive to B. tau adults were characterized using morphological, biochemical and 16S rRNA analyses to determine their taxonomic position. Based upon morphological, biochemical and 16S rRNA sequences (on the basis of closest match), five gut bacterial species of B. tau were characterized as Delftia acidovorans, Pseudomonas putida, Flavobacterium sp., Defluvibacter sp. and Ochrobactrum sp., of which four bacterial isolates, viz., Delftia acidovorans, Flavobacterium sp., Defluvibacter sp. and Ochrobactrum sp. are new records from guts of the fruit fly species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Battalgia, T. C. (2008). Ochrobactrum anthropi septic arthritis of the acromiovascular joint in an immunocompetent 17 year old. Orthopedics, 31, 606.

    Google Scholar 

  2. Behar, A., Ben-Yosef, M., Lauzon, C. R., Yuval, B., & Jurkevich, E. (2009). Structure and function of the bacterial community associated with the Mediterranean fruit fly. In K. Bourtzis & T. Miller (Eds.), Insect symbiosis (pp. 251–271). Boca Raton, FL: CRC.

    Google Scholar 

  3. Bousch, G. M., & Matsumara, F. (1967). Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. Journal of Economic Entomology, 69, 918–920.

    Google Scholar 

  4. Brauman, A., Dore, J., Eggleton, P., Bignell, D., Breznak, J. A., & Kane, M. D. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiology Ecology, 35, 27–36.

    PubMed  CAS  Article  Google Scholar 

  5. Brinkmann, N., Martens, R., & Tebbe, C. C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae: Lepidoptera: Insecta). Applied and Environmental Microbiology, 74, 7189–7196.

    PubMed  CAS  Article  Google Scholar 

  6. Brune, A. (1998). Termite guts: the world’s smallest bioreactors. Trends in Biotechnology, 16, 16–21.

    CAS  Article  Google Scholar 

  7. De Ley, J. (1992). The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. In A. Balows et al. (Eds.), The prokaryotes (pp. 2111–2140). New York, NY: Springer.

    Google Scholar 

  8. Delalibera, I., Handelsman, J. O., & Raffa, K. F. (2005). Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology, 34, 541–547.

    Article  Google Scholar 

  9. Douglas, A. E., & Beard, C. B. (1997). Microbial symbiosis in the midgut of insects. In M. Lehane (Ed.), Biology of the insect midgut (pp. 315–333). New York: Academic.

    Google Scholar 

  10. Douglas, A. E., Minto, L. B., & Wilkinson, T. L. (2001). Quantifying nutrient production by the microbial symbionts in an aphid. Journal of Experimental Biology, 204, 349–358.

    PubMed  CAS  Google Scholar 

  11. Drew, R. A. I., Courtice, A. C., & Teakle, D. S. (1983). Bacteria as a natural source of food for fruit flies (Diptera: Tephritidae). Oecologia, 60, 279–284.

    Article  Google Scholar 

  12. Geib, S. M., Jimenez-Gasco, M. D. M., Carlson, J. E., Tien, M., & Hoover, K. (2009). Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. Environmental Entomology, 38, 686–699.

    PubMed  CAS  Article  Google Scholar 

  13. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  14. Gupta, K., & Anand, M. (2003). In vitro vitamin synthesis by the symbionts of Bactrocera cucurbitae. Indian Journal of Entomology, 65, 518–528.

    Google Scholar 

  15. Heddi, A., Charles, H., Khatchadourian, C., Bonnot, G., & Nardon, P. (1998). Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: A peculiar G + C content of an endocytobiotic DNA. Journal of Molecular Evolution, 47, 52–61.

    PubMed  CAS  Article  Google Scholar 

  16. Holmes, B., Popoff, M., Kiredjian, M., & Kersters, K. (1988). Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. International Journal of Systematic Bacteriology, 38, 406–416.

    Article  Google Scholar 

  17. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (2000). Bergey’s manual of determinative bacteriology (pp. 175–533). New York, NY: Lippincott Williams and Wilkins.

    Google Scholar 

  18. Lauzon, C. R., Sjogren, R. E., & Prokopy, R. J. (2000). Enzymatic capabilities of bacteria associated with apple maggot flies, a postulated role in attraction. Journal of Chemical Ecology, 26, 953–967.

    CAS  Article  Google Scholar 

  19. Lloyd, A. C., Drew, R. A. I., Teakle, D. S., & Hayward, A. C. (1986). Bacteria associated with some Dacus species (Diptera: Tephritidae) and their host fruits in Queensland. Australian Journal of Biological Science, 39, 361–368.

    Google Scholar 

  20. Mastroianni, A., Cancellieri, C., & Montini, G. (1999). Ochrobactrum anthropi bacteremia: case report and review of the literature. Clinical and Microbiological Infections, 5, 570–573.

    Article  Google Scholar 

  21. Mohr, K. I., & Tebbe, C. C. (2007). Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. Applied Microbiology and Biotechnology, 75, 573–582.

    PubMed  CAS  Article  Google Scholar 

  22. Ogston, A. (1984). On abscesses: classics in infectious diseases. Review of Infectious Diseases, 6, 122–128.

    Article  Google Scholar 

  23. Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts and not host genotype. Proceedings of the National Academy of Sciences USA, 102, 12795–12800. doi:10.1073/pnas.0506131102.

    CAS  Article  Google Scholar 

  24. Petri, L. (1909). Ricerche sopra i batteri intestinali della mosca olearia. Memorie della Regia Stazione di Patologia Vegetale di Roma, 1–130.

  25. Prabhakar, C. S., Sood, P., Kapoor, V., Kanwar, S. S., Mehta, P. K., & Sharma, P. N. (2009a). Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). Journal of General and Applied Microbiology, 55, 213–220.

    Article  Google Scholar 

  26. Prabhakar, C. S., Sood, P., & Mehta, P. K. (2008). Protein hydrolyzation and pesticide tolerance by gut bacteria of Bactrocera tau (Walker). Pest Management and Economic Zoology, 16, 123–129.

    Google Scholar 

  27. Prabhakar, C. S., Sood, P., & Mehta, P. K. (2012). Fruit fly (Diptera: Tephritidae) diversity in cucurbit fields and surrounding forest areas of Himachal Pradesh, a North-Western Himalayan state of India. Archives of Phytopathology and Plant Protection, 45, 1210–1217. doi:10.1080/03235408.2012.660612.

    Article  Google Scholar 

  28. Prabhakar, C. S., Sood, P., Mehta, P. K., & Choudhary, A. (2009b). Distribution and developmental biology of fruit flies infesting cucurbits in north-western Himalaya. Journal of Insect Science, 22, 300–308.

    Google Scholar 

  29. Preiswerk, B., Ullrich, S., Speich, R., Bloemberg, G. V., & Hombach, M. (2011). Human infection with Delftia tsuruhatensis isolated from a central venous catheter. Journal of Medical Microbiology, 60, 246–248.

    PubMed  Article  Google Scholar 

  30. Robacker, D. C. (2007). Chemical ecology of bacteria relationships with fruit flies. Integrated Protection of Olive Crops. IOBC/WPRS Bulletin, 30, 9–22.

    Google Scholar 

  31. Rupp, S. (2004). Proteomics on its way to study host-pathogen interaction in Candida albicans. Current Opinion in Microbiology, 7, 330–335.

    PubMed  CAS  Article  Google Scholar 

  32. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco, CA: Freeman.

    Google Scholar 

  33. Sood, P., & Nath, A. (2002). Bacteria associated with Bactrocera sp. (Diptera: Tephritidae)—Isolation and identification. Pest Management and Economic Zoology, 10, 1–9.

    Google Scholar 

  34. Sood, P., Prabhakar, C. S., & Mehta, P. K. (2010). Eco-friendly management of fruit flies through their gut bacteria. Journal of Insect Science, 23, 275–283.

    Google Scholar 

  35. Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M., & Breznak, J. A. (2004). New strategies for cultivation and detection of previously uncultured microbes. Applied and Environmental Microbiology, 70, 4748–4755.

    PubMed  CAS  Article  Google Scholar 

  36. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.

    CAS  Article  Google Scholar 

  37. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences USA, 101, 11030–11035.

    CAS  Article  Google Scholar 

  38. Thanaphum, S., & Thaenkham, U. (2003). Relationships of forms within the Bactrocera tau (Walker) (Diptera: Tephritidae) taxon based on heat shock protein 70 cognate sequences. Annals of the Entomological Society of America, 96, 44–53.

    CAS  Article  Google Scholar 

  39. Thaochan, N., & Chinajariyawong, A. (2011). Attraction of Bactrocera cucurbitae and B. papayae (Diptera: Tephritidae) to the odor of the bacterium Enterobacter cloacae. The Philippine Agricultural Scientist, 94, 1–6.

    Google Scholar 

  40. Ueda, K., Yamashita, A., Ishikawa, J., Shimada, M., Watsuji, T. O., Morimura, K., et al. (2004). Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Research, 32, 4937–4944.

    PubMed  CAS  Article  Google Scholar 

  41. van Borm, S., Buschinger, A., Boomsma, J. J., & Billen, J. (2002). Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proceedings of the Royal Society of London B (Biological Sciences), 269, 2023–2027.

    Article  Google Scholar 

  42. Wang, H., Jin, L., & Zhang, H. (2011). Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology, 110, 1390–1401.

    PubMed  CAS  Article  Google Scholar 

  43. Wernegreen, J. J. (2002). Genome evolution in bacterial endosymbionts of insects. Nature Reviews Genetics, 3, 850–861.

    PubMed  CAS  Article  Google Scholar 

  44. White, I. M., & Elson-Harris, M. M. (1992). Fruit flies of economic significance: their identification and bionomics. Wallingford, UK: Centre for Agriculture and Biosciences International.

    Google Scholar 

  45. Xiang, H., Wei, G. F., Jia, S., Huang, J., Miao, X. X., & Zhou, Z. (2006). Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Canadian Journal of Microbiology, 52, 1085–1092.

    PubMed  CAS  Article  Google Scholar 

  46. Yanagi, M., & Yamasato, K. (1993). Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiology Letters, 107, 115–120.

    PubMed  CAS  Article  Google Scholar 

  47. Zouache, K., Voronin, D., Tran-Van, V., Mousson, L., Failloux, A. B., & Mavingui, P. (2009). Persistent Wolbachia and cultivable bacterial infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One, 4, e6388. doi:10.1371/journal.pone.0006388.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to three anonymous reviewers for their helpful critical comments on the manuscript. They also thank Miss Kajal (Senior Research Fellow, Molecular Plant Pathology Laboratory, CSKHPKV, Palampur) for the help rendered during the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Prabhakar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prabhakar, C.S., Sood, P., Kanwar, S.S. et al. Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker). Phytoparasitica 41, 193–201 (2013). https://doi.org/10.1007/s12600-012-0278-5

Download citation

Keywords

  • Defluvibacter
  • Delftia
  • Flavobacterium
  • Ochrobactrum
  • Phylogeny
  • Pseudomonas
  • 16S rRNA